TRS-80° C

Radio fhaek

A DIVISION OF TANDY CORPORATION
FORT WORTH, TEXAS 76102



THIS WARRANTY SUPERSEDES ALL PRIOR WARRANTIES

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OQWNED COMPUTER CENTER, RETAIL STORE OR FROM A
RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY
i CUSTOMER OBLIGATIONS
A. CUSTOMER assumes full responsibility that this Radic Shack computer hardware purch d‘eé the “Equipment”),
and any copies of Radic Shack software included with the Equipment or licensed separately (the "Software”] meets the
specifications, capacity, capabéiities,, versatility, and other requirements of CUSTOMER,
B. CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which
the Equipment and Software are to function, and for its installation.

II.  RADIO SHACK LIMITED WARRANTIES AND Ci}N{}ITEG\’S OF SALE

A, For a period of ninety (90) calendar days from the date of the Radic Shack sales document received upon purchase
of the Equipment, RADIO SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which
the Software is stored is free from manufacturing defects. THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF
BADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM RADIO SHACK COMPANY-OWNED COMPUTER
CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS AUTHORIZED
LOCATION. The warranty is void if the Equipment’s case or cabinet has been opened, or if the Equipment or Software has
been subjected to improper or abnormal use. If & manufacturing defect is discovered during the stated warranty peried, the
defective Equipment must be returned to a Radio Shack Computer Center, a Radio Shack retail store, partampf ng Radio
Bhack franchisee or Radic Shack dealer for repair. along with a copy of the sales document or le agreement. The original
CUSTOMER's sole and exclusive remedy in the event of a defect is limited to the cov n of the defect by repair,
replacement, or refund of the purchase price, at RADIO SHACK'S election and ssle exp . RADIO SHACK has no
obligation to repiace or repair expendable iter

B. RADIO SHACK makes no warran
except as provided in this paragraph, Software is Heensed on an "AS 187 b
exclusive remedy, in the event of a Software manufacturing defect repair or replacement within thirty
days of the date of the Radic Shack sales document received upon nse of the Software. The defective Software shall be
returned to a Radio Shack Csm;}&zer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack
dealer along with the sales document.

€. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any
warranties of any nature on behalf of RADIO SHACK

D. EXCEPT AS PROVIDED HEREIN, RADIO SHACK MAKES NO EXPRESS WARRANTIES, AND ANY
IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE I8 LIMITED IN ITS
DURATION TC THE DURATION OF THE WRITTEN LIMITED WARRANTIES SET FORTH HERFIN.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation{s) may not
apply to CUSTOMER.

s as to the design, capability, capacity, or suitability for use of the Softwars,
) i JSTOMER'S

without warranty. The f)?‘zg?néf 9
calendar

I LIMITATION OF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TG
CUSTOMER OR ANY OTHER PERSON OR ENTITY WITH REQPSQT TO ANY LIABILITY, LOSS OR DAMAGE CAU SED
OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY "EQUIPMENT” OR "SOFTWARE” § 3
LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY INTE
SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAI MAGES RESLLTJ\E?V FROM
THE USE OR OPERATION OF THE "EQUIPMENT” OR "SOFTWARE.” IN NO EV T SHALL RADIO SHACK BE
LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING QUT OF
ANY BREACH OF THIS WARKRANTY OR IN ANY MANNER ARISING QUT OF OR CONNECTED WITH THE SALE,
LEASE, LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT” OR "SOFTWARE"

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK’S LIABILITY
HEREUNDER FOR DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID
BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT” OR “SOFTWARE” INVOLVED.

B RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or
Software.

C. No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought
more than twe {2) years after the cause of action has accrued or more than four (4) years after the date of the Radio Shack
sales document for the Equipment or Software, whichever first occurs.

D. Some states do not allow the limitation or exclusion of incidental or consequen
limitation(s} or exclusionts) may not apply to CUSTOMER.

ial damages, so the above

IV. ERADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER 2 non-exclusive, paid-up license to use the RADIO SHACK Software on one
computer, subject to the following provisions

A, Except as oth se provided in tware License, applicable copyright lawe shall apply 1o the Software

B. Title to the medium on which ¢ is recorded (cassette and/or diskette) or stored (ROM) is transferred to
CUSTOMER, but not title to the Software.

C. CUSTOMER may use Software on one host computer and access that Software through one or mere terminals if the
Software permits this function.

D. CUSTOMER shall not use, make, manufacture,
as is specifically provided in this Software License. Customer is e};}“?saw ;}mh *:3'

E. CUSTOMER is permitied to make itional copies of the Software o
additional copies are required in the operation of gne computer with the Software, but onl - 5 :
& backup copy to be made. However, for TREDOS Software, CUSTOMER is permitted to make ¢ ;;%eé xzx}}ber of ?ﬁdmzr’mi
copies for CUSTOMER’S own use.

F. CUSTOMER may resell or distribute unmodified copies of the Software pr
copy of the Software for each one sold or distributed. The provisions of this Software Li
parties receiving copies of the Sofiware from CUSTOMER.

. All copyright notices shall be retained on all copies of the Software.

STOMER has purchased one
nise shall also be applivable to third

V. APPLICABILITY OF WARRANTY

A. The terms and conditions of this Warranty are applicable as between RADIO SHACK
sale of the Equipment and/or Software License to CUSTOMER or io a transaction whereby HAD
such Equipment to a third party for lease to CUSTOMER.

B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the
author, ewner and/or licensor of the Software and any manufacturer of the Equipment sold by RADIO SHACK.

and CUSTOMER to either a
SHACH sells or conveys

Vi. STATE LAW RIGHTS
The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may
have other rights which vary from state to sta




TRS-80" C

Radio Sfhaek

A DIVISION OF TANDY CCRPORATION
FORT WORTH, TEXAS 76102



COPYRIGHT NOTICES

Model 4 TRS-80 C Manual
Copyright 1983 by Alcor Systems
Licensed to Tandy Corporation
All rights reserved

Reproduction or use, without express written
permission from Tandy Corporation and Alcor
Systems of any portion of this manual is
prohibited. While reasonable efforts have been
taken in the preparation of this manual to assure
accuracy, Tandy Corporation and Alcor Systems
assume no liability resulting from any errors or
omissions in this manual or from the use of the
information obtained herein.

Model 4 TRS5-80 C Software
Copyright 1983 by Alcor Systems
Licensed to Tandy Corporation
All rights reserved

TRSDOS 6 Operating System
Copyright 1983 by Logical Systems
Licensed to Tandy Corporation
All rights reserved



INTRODUCTION

Congratulations on the purchase of the Model 4 TRS-80 C programming
system. TRS-80 C is a complete program development system that will increase
vour productivity as a programmer.

TRS-80 C 1is a complete implementatation of C as defined in ""The C
Programming Language' by Kernighan and Ritchie. The C library routines
provided are Unix compatible. The compatibility of TRS-80 C with other Unix
implementations of C makes it easy to move C programs from-other computers to
the Model 4 or vice versa.

Included with the TRS-80 C programming system is a very powerful,
programmable, full screen text editor. The editor characteristics may be
easily changed to suit your personal preferences. You can map editor commands
to the Model 4 keyboard as desired and you can define your own editor
commands,

The TRS-80 C compiler generates a very efficient and compact object code.
Some programs developed with TRS-80 C will execute up to 50 times faster than
equivalent programs developed with interpreted BASIC, depending on the
features used. The compact size of the object code allows you to develop
reasonably large programs without the need to resort to overlays or chaining.

An added feature of TRS-80 C is compatibility with TRS-80 Pascal (Cat. No.
26-2211 and 26-2212). You can call functions or procedures written in TRS-80
Pascal from a TRS-80 C program or vice versa.



How TRS-80 C Works

TRS~80 C is a compiled language. This means that programs must first be
translated to object format before they may be executed.

The first step in developing a program is to enter the program into the
computer and save it to a disk file. A full screen, customizable text editor
(EDIT/CMD) is supplied to allow you to create your programs.

The second step is to compile the program. The C compiler (CC/CMD) is a
fast one pass compiler that generates object code that may be directly
executed.

The third step is to execute the program. There is a run utility
(RUNC/CMD) supplied which will execute your compiled programs. The run
utility loads and executes object format files created by the compiler.

The linking loader utility (LINKLOAD/CMD) must be used to execute programs
which have been split into separately compiled segments. The linking loader
loads one or more object format files and links them into a single executable
program. It has the ability to execute the program directly or to build an
executable command file.

Optional optimizations may be performed to decrease the size of a compiled
program or to increase its execution speed. The optimize utility
(OPTIMIZE/CMD) reduces the the size of an object format file by 10 to 30
percent. The codegen utility (CODEGEN/CMD) translates an object format file
into machine instructions which increases execution speed 3 to 5 times.



Producing Programs for Resale

By purchase of the software product described in this manual, you have
obtained a license to duplicate the supplied disk files only as necessary for
personal use on your Model 4 computer. None of the supplied files may be
reproduced for resale.

If you intend to sell application programs developed using TRS-80 C, you
must follow the procedure below to avoid violation of this license and of

copyright laws.

1. Use the C compiler to translate the
the application program to object code.

2. Use the LINKLOAD utility to link the object code

with the TRS~80 C runtime support and
build a stand alone, executable command file

(/CMD extension).

3. The executable command file may be copied and
sold with no royalty payments required. However,
all programs sold must document the fact that they
contain TRS-80 C RUNTIME SUPPORT.



An Overview of the TRS-80 C Manual

There are six sections to this manual. It is suggested that you read
through the Beginners Guide carefully. The six sections are:

(1) BEGINNERS GUIDE
1. Takes you through the steps of backing up the system.
2. Leads you through the steps of entering and executing a
a simple C program.
3. Trouble shooting guide.

(2) EDITOR MANUAL
Shows how to use the Blaise II text editor in detail.

(3) SYSTEM IMPLEMENTATION MANUAL
Gives specific information on the TRS-80 Model 4
implementation of C.

Included is more detailed information on:

1. Compiling and executing programs.

2. Memory usage.

3. Using the system dependent library functions.
(low level I/0 routines, graphics, keyboard,
and system call interfaces)

. Using the library of dynamic string functions.

Using the random file functioms.

. Interfacing machine language programs to C.

. Miscellaneous patches to modify the system.

~ O o

(4) TUTORIAL
A step by step introduction to C aimed at people
with some knowledge of a computer language.

(5) REFERENCE MANUAL
A detailed guide for the C language.

(6) ADVANCED DEVELOPMENT PACKAGE
Contains sections on the use and execution of the Codegen

and Optimize programs. Explains when and why to use
these utilities.



Disk Files

The TRS-80 C system includes the following files:

Disk 1 of 3
CC/CMD C compiler
CMD /HLP Editor help file
CERRORS/DAT Error message file used by the compiler
EDIT/CMD Text editor
HELP/HLP Editor help file
KEY/HLP Editor help file
RUNC/CMD Fast load and run utility
SAMPLE/EDT Sample binary setup file from Editor Manual
SETEDIT/CMD Editor setup file utility
SETUP/EDT Editor binary setup file
STDIO Standard I/0 header file
SYSTEMI/JCL System file configuration
SYSTEM2/JCL System file configuration

Disk 2 of 3
CODEGEN/CMD Native code generator
CODEINIT/DAT Data file for CODEGEN/CMD
CLIB/C C source library
CLIB/OBJ Object for C source library
LINKLOAD/CMD  Linking loader utility
OPTIMIZE/CMD  P-code Optimizer
PRINTF/C C source (formatted output functions)
PRINTF/OBJ Object (formatted output functions)
RANDOM/OBJ Object (random file functions)
SCANF/C C source (formatted input functions)
SCANF/OBJ Object (formatted input functions)
STRINGS/0OBJ Object (dynamic string functions)
SYSTEM/OBJ Object (low level system functions)
SYSTEM3/JCL System file configuration
SYSTEM4/JCL System file configuration
TRSLIB/OBJ Object (TRS-80 specific functions)



Disk 3 of 3

CCR/CMD
cc/ovl
cc/ov2
cc/ov3
CC/0ov4
RUNC/0OBJ
HEXTOBIN/CMD
CSUPPORT/BIN

Overlayed C compiler {(for larger programs)
Overlay 1 for overlayed C compiler

Overlay 2 for overlayed C compiler

Overlay 3 for overlayed C compiler

Overlay 4 for overlayed C compiler

Contains TRSLIB, RANDOM, and STRINGS libraries
Utility to convert hex files to binary
Contains all of the C libraries



Table of Contents

Chapter 1 Getting Started

1.1 Making Backups
1.2 File Configuration

1.2.1 Hard Disk Users
1.2.2 Floppy Disk Users

1.3 Overall System View
Chapter 2 Using the Editor

2.1 Editor Description

2.1.1 Setup Files
2.1.2 Using SAMPLE/EDT
2.1.3 Executing the Editor

2.2 Editor Commands

2.2.1 Cursor Movement
2.2.2 Insert and Delete
2.2.3 Other Commands

Chapter 3 Program Development

3.1 Editing
3.2 Compiling
3.3 Running

Chapter 4 Miscellaneous

.1 File Names and Devices
.2 Alternate Symbols

.3 Standard Header File
.4 Trouble Shooting

.5 Common Error Messages
.6

P R T S o)

Common Programming Mistakes

O 00~

13

13
14
16

17

17
17
18
19
20
21






Chapter 1

Getting Started

1.1 Making Backups

The
backup
create

1

2)

3)

4)

6)

first thing you should do before using the TRS-80 C system is to make
copies of the three supplied master disks. Follow the steps below to
your backup disks.

Insert a TRSDOS 6 operating system disk into drive 0
and press the reset key.

When prompted with Date ? , type in the current date in
the form mm/dd/yy and press the <enter> key. The screen
will then display TRSDOS Ready.

Insert a new blank disk into drive 1 and type
format :1 <enter>. Answer the prompts as follows:

Diskette name ? Diskl <enter>

Master password ? password <enter>

Single or Double density <$,D> ? d <enter>
Number of cylinders ? 40 <enter>

The operating system will now format the disk and
display the message "Formatting complete" when finished.

Now type: Dbackup :0 :1 (x) <enter>

When prompted with Insert SOURCE disk <enter>,

insert the TRS-80 C disk labeled '"Disk 1 of 3"

into drive 0 and press the <enter> key. The operating
system will make a backup and then display

the message: Insert SYSTEM disk <enter>. Imsert the
TRSDOS 6 operating system disk back into drive 0 and
press the <enter> key.

Repeat steps 3 and 4 using the diskette name Disk2
instead of Diskl in step 3 and 'Disk 2 of 3" instead
of "Disk 1 of 3" in step 4.



Getting Started Chapter 1

7) Repeat steps 3 and 4 using the diskette name Disk3
instead of Diskl in step 3 and ''Disk 3 of 3" instead
of "Disk 1 of 3" in step 4.

8) Label the backup disks as Diskl, Disk2, and Disk3.

Place your master TRS-80 C disks in a safe place and
use the backup copies.

1.2 File Configuration

The C system files should now be arranged to provide a useful configuration
for program development. How the files are arranged depends on the drive
configuration of your Model 4.

1.2.1 Hard Disk Users

If you have a hard disk drive, then one useful configuration is to copy all
the TRS-80 C files onto drive 0 of the hard disk. This may be accomplished by
using the backup by class command after booting the hard disk system. Place
the disk labeled Diskl into one of the floppy drives. If the floppy drive
number is 2, then the following command may be used to copy all the Diskl
files to drive 0 of the hard disk.

TRSDOS Ready
backup :2 :0 {(new) <ENTER>

Repeat the process using the disks labeled Disk2 and Disk3.

1.2.2 Floppy Disk Users

There are many ways of arranging the supplied C files to provide a suitable
configuration for program development. How you arrange the files is dependent
on the number of drives available.

If you have more than two floppy drives, a useful configuration would be to

use drive 0 for the operating system, drive 1 for the Diskl, Disk2 or Disk3
disks, and the remaining drives for storing the programs being developed.

If you have only two drives, follow the configuration steps outlined on the
next page. This is a sample 4 disk configuration that combines only the
necessary operating system files with selected C files. With this
configuration, drive 0 will be used as a system disk (containing the necessary
operating system files and selected C files) and drive 1 will be used as a
data disk (containing the programs being developed).



Chapter 1 Getting Started

Configuration for a 2 drive system

step 1) Make 4 backup copies of your original TRSDOS Version
6 operating system disk and label the backup copies
as SYSTEMI through SYSTEM4.

step 2) Insert SYSTEMI into drive 0 and Diskl into drive 1.
Type: DO =SYSTEMI <ENTER>
All unnecessary operating system files will be deleted
from SYSTEM! and the following C files will be
copied from Diskl to SYSTEMl: (CC/CMD, CERRORS/DAT,
STDIO, RUNC/CMD, EDIT/CMD, SETUP/EDT, SAMPLE/EDT,
CMD/HLP, HELP/HLP, KEY/HLP)

step 3) Imsert SYSTEM2 into drive 0.
Type: DO =8YSTEM2 <ENTER>
All unnecessary operating system files will be deleted
from SYSTEM2 and the following C files will be
copied from Diskl to SYSTEM2: (SETEDIT/CMD, EDIT/CMD,
HELP/HLP, CMD/HLP, KEY/HLP, SETUP/EDT, SAMPLE/EDT)

step 4) Insert SYSTEM3 into drive 0 and Disk?2 into drive 1.
Type: DO =SYSTEM3 <ENTER>
All unnecessary operating system files will be deleted
from SYSTEM3 and the following C files will be
copied from Disk2 to SYSTEM3: (LINKLOAD/CMD, CLIB/C,
CLIB/0OBJ, PRINTF/C, PRINTF/OBJ, SCANF/C, SCANF/0BJ,
SYSTEM/OBJ, TRSLIB/OBJ, STRINGS/0BJ, RANDOM/OBJ)

step 5) Insert SYSTEM4 into drive 0.
Type: DO =SYSTEM4 <ENTER>
All unnecessary operating system files will be deleted
from SYSTEM4 and the following C files will be
copied from Disk2 to SYSTEM4: (CODEGEN/CMD,
OPTIMIZE/CMD, CODEINIT/DAT)

The disk labeled SYSTEM! contains all the C files which are necessary to
edit, compile, and execute programs. This is the only system disk needed for
beginning programmers. The programs on SYSTEM2 through SYSTEM4 are for more
advanced programming.

The disk labeled SYSTEM2 contains a utility for creating customized setup
files for the editor. It also contains the editor and the associated help
files and setup files.

The disk labeled SYSTEM3 contains the linking loader and libraries. The
linking loader must be used to link together separately compiled C functions.
The object code files contain libraries of functions that a C program may
call. The standard C functions (SYSTEM/OBJ, CLIB/0OBJ, PRINTF/OBJ, and
SCANF/0BJ) are built into RUNC/CMD but must be explicitly loaded from these



Getting Started

Chapter 1

libraries when using LINKLOAD/CMD. The C source is provided for three of the

libraries.

The disk labeled SYSTEM4 contains utilities for optimizing once you become
familiar with the system. The files on this disk are explained further in the

System Implementation Manual and the ADP Manual.

1.3 Overall System View

The following diagram illustrates the program development
process using the TRS-80 C system.

create the program execute the program

I
|
|

compile the program

l |
| l
! | |
v v v

| I | ! l I
| EDIT/CMD l ! CC/CMD l | RUNC/CMD or]|
| t | | | LINKLOAD/CMD |
l I l f | |

f . " | 5 5

create | |modify read | |  save I !

source | | source source | | object [ |

program]| | program program | | program f I

/C | | /cC /C | | /OBJ | !

| | l I RUNC/CMD | |

| f | [ load object | I

¥ ! | | and execute | |

| | v f |

f [ | f l f

f ! DISKETTE | |

——————————————————— > STORAGE | Ko

f I

LINKLOAD/CMD
load object and
execute or build /CMD




Chapter 2

Using the Editor

The remainder of this manual describes the steps of editing, compiling, and
executing a C program. For the following discussion, it is assumed that the
files contained on the disk labeled SYSTEMl (described in chapter 1) are
available. 1If you have a two drive system, place the SYSTEMI disk in drive O.
If you have more than two drives or if you have a hard disk, make sure that
the files on SYSTEM1 are available on some drive. You should alsoc have a
formatted disk with plenty of free space for storing programs. If you have a
two drive system, insert a formatted data disk into drive 1.

2.1 Editor Description

The editor has many commands which are internally mapped to standard ASCII
control codes. These codes are generated from the keyboard by holding down
the key labeled CTRL while pressing an alphabetic key. For example, the
editor command to move the cursor one character to the right is mapped to CTRL
D. (the Editor Manual contains a complete listing of internally mapped
commands). An interesting feature of this editor is that the internal mapping
of commands to keys may be changed. This means that you can design the
keyboard layout to suit your own personal preferences. As an example, you may
want to use the right arrow key (rather than CTRL D) to move the cursor one
character to the right.

2.1.1 Setup Files

Each time the editor is executed, it reads a file named SETUP/EDT. The
editor uses this file to determine how to operate. At a mimimum, this file
must contain information about the Model 4 terminal. For example, the editor
must know how to position the cursor on the screen. Optionally, the file may
contain information about how editor commands are mapped to keys. For
example, it may tell the editor that the right arrow key should cause the
cursor to move to the right.

The supplied file named SETUP/EDT contains only information about the Model
4 terminal. This setup file will cause the editor to only understand the
internally defined mapping of commands to keys. In other words, the CTRL key
is used to execute commands. The supplied file named SAMPLE/EDT is a sample
editor setup file that contains the same terminal information but in addition
defines a keyboard layout that utilizes the Model 4 arrow keys.



Using the Editor Chapter 2

2.1.2 Using SAMPLE/EDT

The editor manual describes the operation of the editor based on the
internal mapping of commands. At the end of the manual is a sample setup file
that defines a keyboard layout that utilizes the Model 4 arrow keys. This is
the supplied SAMPLE/EDT setup file. To illustrate how the editor's operation
may be altered, this manual will describe the editor commands based on using
the SAMPLE/EDT setup file. Using SAMPLE/EDT causes many of the internal
editor command mappings to change. For example, the tab command (TB) is
changed from CTRL I to CLEAR RIGHT ARROW.

Since the editor automatically reads the setup file named SETUP/EDT, you
must rename the setup files in order to use SAMPLE/EDT. If the disk is write
protected (tab covers write protect notch), the write protect tab must be
removed before renaming the files. Type the following commands from the
TRSDOS Ready prompt,

RENAME SETUP/EDT TO SETUP/SAV <ENTER>
RENAME SAMPLE/EDT TO SETUP/EDT <ENTER>

2.1.3 Executing the Editor

Before executing the editor, make sure that there is plenty of disk space
for storing files. It is a good practice to write protect the disks which are
used as system disks (for example, SYSTEMl) to prevent data from being stored
on them. On a two drive system, this will force all files to be stored on the
data disk in drive 1.

The editor may be executed from TRSDOS Ready by typing a command of the
following form.

EDIT filename <ENTER>

The filename is optional. If no file is specified, the editor will create
a new file. The name of the new file will be specified at the end of the edit
session. If a file name is specified, it should be the name of an ASCII
formatted text file with record lengths of 80 characters or less. The file
name may be any legal TRSDOS file name, including drive specifier. It is
suggested that you specify a drive number with the file name. This will cause
the editor to place the file on that drive when the editor is exited.

The editor reserves a section of memory which is used as a buffer for
storing text. The symbol *EOB is displayed by the editor to indicate the "end
of buffer". If no file is specified when the editor is executed, the buffer
will start out empty and the *EOB symbol will appear at the top left corner of
the screen. If a file is specified, the editor will load in the first 100
lines of the file and display a screen full of lines starting with the first
line loaded.



Chapter 2 Using the Editor

I1f the buffer is empty, blank lines must be inserted into the buffer before
text may be entered. Each time <CLEAR N> is typed (holding the CLEAR key down
while pressing the N key), a blank line will be inserted into the text
buffer. Once the buffer has lines in it, you may simply type in the text.
Typing <LEFT ARROW> will cause the cursor to backspace if you need to correct
a typing error. The <ENTER> key will cause the cursor to be positioned to the
beginning of the next line. The editor will not allow the cursor to be
positioned beyond the *EOB symbol. To enter more text after reaching the end
of buffer, type <CLEAR N> to enter more blank lines into the buffer.

2.2 Editor Commands

The most often used editor commands are the ones which move the cursor
around within the text buffer. Most of the cursor movement commands are
mapped to the arrow keys. Other commands are mapped to the alphabetic keys
and function keys.

2.2.1 Cursor Movement

There are four basic cursor movement commands. (right, left, up, and
down). Each of these commands moves the cursor in the specified direction.
These commands have been mapped to the arrow keys. They are executed by
simply pressing the appropriate arrow key.

Key Command Name Function

<RIGHT ARROW> RT (right) move cursor right 1
character

<LEFT ARROW> LF (left) move cursor left 1
character

<UP ARROW> UP (up) move cursor up 1
line

<DOWN ARROW> DN (down) move cursor down 1
line

The basic cursor movement commands provide the ability to position the
cursor any place on the screen. However, moving only a single character or
line at a time can be a little slow. Other commands are mapped to allow you
to move the cursor more efficiently.

There are two commands that move the cursor left or right by one tab stop.
The tab command moves the cursor to the right to the next tab stop. The back
tab command moves the cursor to the left to the next tab stop.

Since the text buffer holds more than a screen full of text, you also need
a way to scroll back and forth in the buffer. The roll up command moves the



Using the Editor Chapter 2

cursor one screen towards the beginning of the buffer while the roll down
command moves the cursor one screen towards the end of the buffer.

These commands have also been mapped to the arrow keys. They are executed
by holding down the CLEAR key while pressing the appropriate arrow key.

Key Command Name Function

<CLEAR RIGHT ARROW> TB (tab) move cursor right to the
next tab stop

<{CLEAR LEFT ARROW> BT (back tab) move cursor left to the
next tab stop

<CLEAR UP ARROW> RU (roll up) move one screen toward
the top of the buffer

<CLEAR DOWN ARROW> DN (roll down) move one screen toward

the bottom of the buffer

Other commands provide the ability to move the cursor greater distances
even more efficiently. The beginning of line command positions the cursor at
the beginning of the line. The end of line command positions the cursor at
the end of the line. The top of buffer command displays the first line in the
buffer at the top line of the screen. The bottom of buffer command positions
the cursor at the *EOB mark at the end of the buffer.

These commands are also mapped to the arrow keys. They are executed by

pressing and releasing the BREAK key and then pressing the appropriate arrow key.

Key Command Name Function

<BREAK RIGHT ARROW> EL (end line) move cursor to the end of

the line
<BREAK LEFT ARROW> BL (beginning move cursor to the beginning
line) of the line
<BREAK UP ARROW> TP (top of display the first line in
buffer) the buffer at top of screen
<BREAK DOWN ARROW> BB (bottom of - move the cursor to the *EOB
buffer) mark at the end of buffer

2.2.2 Insert and Delete

Seven commands are mapped to alphabetic keys. You have already used one,
the insert line command. There are three commands that delete either a
character, word, or line.

The undelete line command may be used to restore a line that was
accidentally removed by the delete line command. There is also a duplicate
line command that may be used to make a duplicate copy of the line above the
cursor.



Chapter 2 Using the Editor

The insert character command may be used to insert characters in a line.
When this command is executed, subsequent characters that you type will be
inserted at the current cursor position. The editor will continue to insert
characters until a non-printable character (such as the <ENTER> key) is
typed.

These commands are mapped to alphabetic keys. They are executed by holding
down the CLEAR key while pressing the appropriate alphabetic key.

Key Command Name Function

<CLEAR N> IL (insert insert a blank line at
line) the cursor line

<CLEAR C> DC (delete delete character under
character) the cursor

<CLEAR W> DW (delete delete word under the
word) cursor

<CLEAR 1> DL (delete delete line under the
line) cursor

<CLEAR U> UL (undelete restore the last deleted
line) line

<CLEAR D> DU (duplicate duplicate the line above
line) the cursor

<CLEAR I> IC (insert insert characters until

character) a non-printable is typed

2.2.3 Other Commands

Six other frequently used commands are mapped to the Model 4 special
function keys (Fl through F3).

The forward word command moves the cursor to the first character of the
word to the right. The backward word command moves the cursor to the first
character of the word to the left. Both the forward word and backward word
commands will move the cursor across line boundaries.

The split line command creates two lines out of onme. This command causes
all characters to the right of the cursor to be moved to a new line below.
The merge line command is used to merge two lines. As many characters as will
fit on a line are moved from the line below the cursor to the end of the line
containing the cursor.

The insert mode command is similar to the insert character command.
However, it does not terminate when a non-printable character is typed. The
editor continues to insert characters until the insert mode command is
executed again. This command toggles the editor in and out of insert mode.
While in insert mode, the editor inserts a blank line when the <ENTER> key is
typed. 1If the <ENTER> key is typed in the middle of a line, the characters to
the right of the cursor are moved to the next line.



Using the Editor Chapter 2

The last command that you must know is the command that places the editor
in command mode. Command mode allows all editor commands to be executed.
This is important since not all commands are mapped to a key. When this
command is executed, the editor displays angle brackets <> at the bottom left
corner of the screen. Then any editor command may be executed by typing its
two character command name followed by the <ENTER> key. For example, UP
<{ENTER> would execute the cursor up command and then exit command mode.

These commands are executed by pressing the appropriate function key.
Three of them require that you hold down the shift key while pressing the
function key.

Key Command Name Function
<F1> CM (command enter command mode
mode)
<F2> BW (backward move the cursor left one
word) word
<F3> FW (forward move the cursor right
word) one word
{SHIFT F1> IM (insert enter permanent insert
mode) character mode
{SHIFT F2> SP (split split the line at the
line) cursor
<SHIFT F3> MG (merge merge the line below
line) with the cursor line

The commands described so far should be quite adequate for handling most of
your editing needs. The editor has many other commands which are described in
the Editor Manual. Once you become familiar with these commands, you will want
to read the Editor Manual for information on other available commands.

For now, the only other commands you must know are the commands to
terminate an edit session. To execute these commands, you must enter command
mode. As described earlier, pressing the <F1> function key puts the editor in
command mode.

Two commands may be used to terminate an edit session. The first command
is EX (exit). This command should be used if you wish to save the text to a
file. The other command is QT (quit). This command should be used if you wish
to terminate the edit session without saving the text.

The EX command requires two parameters, the name of the file to which the
text will be written, and whether or not you wish the editor to create a
backup file. The editor will prompt you to enter both of these parameters
when EX <ENTER> is typed. The first prompt is for the file name. If creating
a new file, now is the time that the file name must be specified. Simply type
in a valid file name. If editing a pre-existing file, you may simply type
<ENTER> to the file name prompt. The text will be written to the file
specified when the editor was executed. The second prompt is whether or not



Chapter 2 Using the Editor

to create a backup file. You may answer this prompt by typing either Y for
yes or N for no, followed by the <ENTER> key. Simply typing the <ENTER> key
for this prompt is equivalent to typing Y <ENTER>. A backup file is created
only if the file being edited already exists. The file specified in the EXIT
command is renamed with the extension /BAK before the new file is written
out. The backup file may be used to restore a file if the file is for some
reason damaged. The backup file will reflect one edit session prior to the
current one.

The QT command is used to terminate the edit session without saving
anything. Simply type QT <enter>. You will then be prompted to make sure that
this is what you really want to do. If you answer Y <enter>, the editor
terminates. Otherwise, the edit session is continued.

- 11 -






Chapter 3

Program Development

3.1 Editing

Now that you know how to use the editor, a simple C program may be
created. Drive 1 will be used to store the program so make sure that there is
plenty of free disk space on drive 1 before beginning. First type EDIT
{enter> and the editor is executed. Since no file was specified, *EOB will
appear at the top left corner of the screen. Type CLEAR N four times to enter
four blank lines into the buffer.

Note: The { symbol is generated by "shift clear <".
The } symbol is generated by 'shift clear >'".

Type in the following text.

main()
{
printf(" This is my first program.")
b4
*EOB

Once the text has been entered as shown above, press <Fl> to enter command
mode. Execute the exit command and answer the two prompts as shown below.

<> EX <enter>
<EXIT>FILE: TEST/C:1 <enter>
<EXIT>BACKUP? <enter>

The program will be saved to the file TEST/C on drive 1 and the editor will
exit to the operating system. It is important to name your C source files
with the extension /C because the compiler uses this as the default
extension.

- 13 -



Program Development Chapter 3

3.2 Compiling

The compiler must now be used to translate the C program to object format.
Once in object format, the program may be executed. Type the following to
compile the program created in the previous chapter.

CC TEST:1 <enter>

The C compiler will execute and begin reading the file TEST/C on drive 1.
As each line is read, it is translated to object code. The compiler will
write the object code to the file TEST/OBJ on drive 1. The compiler also sends
a listing to the screen as it compiles. The listing will show if there are
any errors in the program being compiled. The below listing was generated by
compiling the sample test program.

TRS80 C VERSION: 02.01.00 XX XX XX xx/xx/xx PAGE 1
1{main()
214
3| printf(" This is my first program.')
41

kkkk ~14 2
ERRORS DETECTED

2 ERRORS DETECTED

2 IDENTIFIER OR OTHER LVALUE EXPECTED
14 ';' EXPECTED

STACK USED = xxxx OF xxxX HEAP USED = xxxx OF xxxX

As you can see, the compiler detected some errors in the program. The
compiler always writes an error message line following the line where the
error was detected. The error message line begins with 5 asterisks to clearly
indicate that an error was detected. It also contains a pointer to the line
above at the approximate location of the error. Following the pointer is an
error code telling the type of error detected. At the end of the listing, all
generated error codes are listed with a brief explanation of the error.

All C programs, including the compiler, use a section of memory which is
divided into two parts. One part is the stack and the other part is the
heap. The stack is used to store most variables. The heap is used to store
dynamic variables and file descriptors. When the compile is finished, the
amount of stack and heap used out of the total amount available is displayed
on the screen.

- 14 -



Chapter 3 Program Development

Because of the context in a C program, a single error in the program can
generate multiple error messages. Usually, the first error code will describe
the real cause of the error. In this example, the first error detected is on
line 4, error code l4. Error code 14 says that a semicolon was expected. This
error was caused by the failure to terminate the statement on line 3 with a
semicolon. The other error, error code 2, is a side effect of the first
error. The compiler automatically creates a file named

C/ERR

when errors are detected in a program. Only the lines containing errors,
along with the error message line, are written to this file.

The program should now be corrected before it is executed. The following
will cause the editor to execute and display file TEST/C on the screen.
EDIT TEST/C:1 <enter>
Move the cursor to the third line of the program and add a semicolon just
after the right parenthesis. The third line should then look as follows.
printf(" This is my first program.');

Press <F1> to enter command mode and type EX to exit the editor. The two
prompts may be answered by simply pressing the <enter> key.

Now the program may be compiled once again by typing the following.

CC TEST:1 <enter>

The following listing will be sent to the screen as the program is compiled.

TRS80 ¢ VERSION: 02.01.00 XX1XX:XX xx/xx/xx  PAGE 1
1imain()
21¢
3] printf(" This is my first program.');
4}
TEST

NO ERRORS DETECTED
NO ERRORS DETECTED

STACK USED = xxxx OF xx¥xX HEAP USED = xxxx OF XXXX

This time no errors were detected. The program is a legal C program. Now
that the program has been compiled with no errors, it may be executed.



Program Development Chapter 3

3.3 Running

Once the program has been compiled without errors, it can be executed with
the RUNC command. From the TRSDOS Ready prompt, type the following to execute
the program in file TEST/0BJ on drive 1.

RUNC TEST:1 <enter>

The program will print the following message on the display screen (also
referred to as the "crt").

This is my first program.

When a program terminates, (ie. finishes execution normally), the address
of the last instruction executed is displayed on the screen. Following this
is the amount of stack and heap used by the program. The stack and heap are
explained in the System Implementation Manual. The miscellaneous patch section
of the System Implementation Manual also explains how to prevent this
information from being displayed.

C programs perform input and output using file pointers. A file pointer
may point to a device such as the "crt" or to a disk file such as "test/dat".
When a C program is executed, two standard input and output file pointers are
automatically defined. These are called "stdin" and "stdout". By default,
"stdin" points to the keyboard while "'stdout" points to the crt. Some of the
input library functions are defined to receive input from "stdin" while some
of the output library functions are defined to send output to "stdout". The
"printf" function sends its output to "stdout". Therefore, our sample program
sent the message to the crt.

It is possible to change the "stdin'" and "stdout'" file pointers so that
they point to a disk file or some other device when a program is executed.
This is called IO redirection. The RUNC command allows you to redirect the
file pointers "stdin" and "stdout". The < symbol is used to redirect the input
file pointer "stdin" and the > symbol is used to redirect the output file
pointer "stdout". Our sample program may be executed again with the message
being sent to a disk file rather than to the crt. For example, the following
command will execute the sample program with the output going to the file
TEST/DAT on drive 1.

RUNC TEST:1 >TEST/DAT:1 <enter>

- 16 -



Chapter 4

Miscellaneous

4.1 File Names and Devices

The C compiler always uses the extension /C if the file name is specified
when the compiler is executed. The compiler may also be executed by simply
typing CC without a file name. If executed in this manner, the compiler will
prompt for the C SOURCE file name, the file to use for the LISTING, and the
file to use for the OBJECT. Either a file name or a device may be specified.
If a file name is specified, the complete file name, including extension, must
be used (ie. the compiler does not use default extensions). The RUNC utility
uses the default extension /OBJ if no extension is specified in the file
name. You may also specify an extension if the object code is in a file named
with an extension other than /OBJ. For example, RUNC TEST/COD might be used.

The file names that you use to direct C input and output are the same
format as normal TRSDOS file names. The disk drive specification is
optional. Devices may also be specified instead of a file name. For example,
the name of the line printer is ":L". The name of the terminal which is the
keyboard for input and the crt for output, is ".C". There is also a dummy
device. If a file is associated with ":D", then no actual output occurs.
This is useful if you wish to discard certain outputs. For example, the
listing may be discarded during a compile or you might discard some of the
output generated by a program when it is executed. The sample program may be
compiled with the listing turned off and executed with the output being sent
to the line printer.

Compile Execute
cce RUNC TEST:1 >:L
SOURCE = TEST/C:1
LISTING = :D
OBJECT = TEST/0BJ:1

4.2 Alternate Symbols

The C compiler recognizes alternate representations of certain symbols

- 17 -



because not all terminals have the ability to generate them. The alternates
may be used in place of the normal C symbols if desired. However, it is best
to use the normal symbols to maintain compatibility with standard ¢ notation.

Generated on

symbol Model 4 by alternate
{ clear shift < {#
> clear shift > #)
E clear shift / /1
L /1
- clear ; @
[ clear < (@
] clear > @)
\ clear / !/

clear enter @ ————-

4.3 Standard Header File

The standard header file, STDIO, contains the definition of types,
constants, and variables which are used by the C function libraries. Most of
the definitions are related to file input and output.

- 18 -



#define MAXFILES 20

#define EQF -1

#define NULL 0

#define stdin _iob{0]
#define stdout _iob[1]
#define stderr _iob[2]
#define getchar () getc(stdin)
#define putchar(c) putc{c,stdout)

typedef struct {
char file[32]; /* file descriptor */

int £d; /% file descriptor number */

> FILE;

extern FILE * 10b[MAXFILES];

typedef struct { /* dynamic string structure */
int length;
char string[80];

} STRING;

[ ettt et dede dede i fodedede dede dede dedede dede dedede dede dedede e de dede dedede e dede dede e ok |

Generally this file should be included in the compilation of a C program.
Any C program that uses an identifier that is defined in STDIO must include
this file. Another file may be included in the compilation of a C program by
using the #include command. For example, our sample program can include the
standard header file in the compilation as follows.

#include "'stdio"
main()
{
printf(" This is my first program.');

b

4.4 Trouble Shooting

(Miscellaneous Errors)

1. Problem ~ While editing a file, the latter part of a file
is found to be missing.

Answer - Need to use the APPEND command to page the latter

- 19 -



part of the file into the text buffer. See the
Editor Manual.

2. Problem — Upon exiting the editor, a PHYSICAL IO error

message is displayed.

Answer - The disk is full. Make sure that there is plenty
of free disk space when editing files.

During a compile, the C compiler abnormally
terminates with a FATAL ERROR - OUT OF HEAP,
or QUT OF S8TACK

3. Problem

Answer - The compiler does not have enough memory for either
the stack or the heap. Specify the size of the stack
during the compile (eg. CC <5K> TEST) or split the
program intoc separately compiled files.

4, Problem

When executing your compiled program with the

RUNC command, or a command (/CMD) file built with
the LINKLOAD utility, it abnormally terminates with
the FATAL ERROR -~ OUT OF HEAP, or OUT OF STACK

Answer - Specify the amount of stack when using the RUNC
command or the build command of the linking loader.
(eg. RUNC TEST 10K : See the System Implementation
Manual for further details).

5. Problem — After executing the compiler using the long form
where the OBJECT and LISTING files are specified,
the original source file suddenly contains object
code.

Answer - The /C extension was used when specifying the
object file.

4.5 Common Error Messages

(By the Compiler)

2 IDENTIFIER OR OTHER LVALUE EXPECTED - This error code often
follows a prior error code because the compiler begins
looking for the next statement.

13 *}' EXPECTED - There must be a } for every {
in a C program.

14 '; ' EXPECTED - The preceding declaration or statement
is not terminated by a semicolon (;).

-20-



104 UNDECLARED IDENTIFIER - All variables must be declared in
a C program.

129 TYPE CONFLICT OF OPERANDS IN AN EXPRESSION - Using
incompatible operand types in an expression.

{(Runtime Error Messages)

The error codes discussed above are generated by the compiler due to an
error in the C source program. There are times when the compiler may generate
a fatal error message that is not due to an error in the source program.

These are called runtime errors because they are detected by the runtime that
is included with all C programs, including the compiler. The following are
examples of runtime errors.

RUNTIME ERROR 01 OUT OF STACK

(Caused by trying to compile or run too large of a program)
RUNTIME ERROR 02 OUT OF HEAP

(Caused by trying too compile or run too large of a program)
RUNTIME ERROR 09

(file not found or disk error)

Note: Explanation of COMPILER and RUNTIME error codes may be
found in the appendix of the Reference Manual.

4.6 Common Programming Mistakes

1. The assignment operator = is used rather than the
equality operator == in a conditional expression. For
example, in the statement below, a = b will never be
executed because the expression (i = 0) always evaluates to
0 (false).

used: if (i = 0) a = b;
intended: if (i == 0) a = b;

2. A variable containing a character is compared with an
integer constant rather than a character constant.

used: ¢ = getchar();
if (¢ >= 0 && ¢ <= 9) printf(" digit");
intended: ¢ = getchar();
if (c >= '0' && ¢ <= '9") printf(" digit");

3. The library functions such as getchar return characters
as integers so that EOF may be returned. If a variable

- 21 -



declared of type char is used to store a returned character,
comparison with EOF will always be false.

used: char c¢;

¢ = getchar();
if {c == EOF) exit;
printf("EOF detected");

intended: int ¢
¢ = getchar();
if (¢ == EOF) exit;
printf("EOF detected');

4. The indexes used to access the elements of an array are
off by 1. The declaration "char a[20];" creates an array of
20 characters with an index range of 0..19 rather than
1..20.

used: for (i=l; i <= 20; i++) al[i] = 'z';
intended: for (i=0; i <= 19; i++) a[i]

[
N

5. The break statement is omitted at the end of one of the
case labels of a switch statement. Without a break
statement, execution falls through to the next case label.

used: switch (c¢) ¢
case 'a': printf("value of is 'a'"y;
case 'b': printf("value of ¢ is 'b'");
b
intended: switch (c¢) {
case 'a': printf("value of c is 'a''");
break;
case 'b': printf('value of ¢ is 'b'");

by

]

- 22 -



Table of Contents

Chapter 1 Blaise II Overview

i ot ek o fnd ok

.

PR »
[ ARV R W S

Setup Files

The SETEDIT Program
Text Buffer Management
The Work File

Compose Mode

Command Mode

Chapter 2 Getting Started

RN N

s s 4 s e s
QO ~ O Ut W N

.

Editor File Configuration

Terminal Configuration
Executing the Editor
Basic Editor Commands
Editor Help Files
Swapping Disks

Exiting the Editor
Sample Edit Session

Chapter 3 Editor Commands

3.1 Command Parameters

3.2 Cursor Positioning Commands

New Line [NL]
Right [RT]

Left [LF]

Up [UP]

Down [DN]

Tab [TB]

Back Tab [BT]
Forward Word [FW]

.

°

.

°
®

End of Line [EL]

Home [HM]
Roll Up [RU]
Roll Down [RD]

°

Ly

°

.
-

Go to Mark [GM]
Swap [SW]

. ® .
° 3 - °

Minus [MI or -]
Plus [PL or +]

.
o

[ I R e el e el S N S S SV o Bie o LN B AU, B R ORI N

L W WL LWWWWILWWLWWWWWWWWWWW
s . . . .
NN NN NN DNDNDDRNDNNDDNDNRDNDNDNDNDND NN N
.
WM = OOV WD -=O

e
-

Backward Word [BW]

Beginning of Line [BL]

Top of Buffer [TP]
Bottom of Buffer [BB]

Set Row [SR or ROW]
Set Column [SC or COL]
Position [PO or POSITION]

(%]

~NoONOoOYN W

12
13
17
17
18
19

21

21
23

23
23
23
23
23
23
24
24
24
24
24
24
24
24
25
25
25
25
25
25
25
26
26



3.2.24 Show Line(SL or SHOWLINE ]
3.2.25 Horizontal Scroll [HS or HSCROLL]

3.3 Inserting Text

1 Insert Mode [IM]

2 Insert Character [IC]

3 Insert Line [IL]

.4 Undelete Line [UL]

.5 Quote [QU]

.6 Quote String [QS or QUOTE]

3.4 Deleting Text

3.4.1 Delete Character [DC]
3.4.2 Rub Out [RB]

3.4.3 Delete Word [DW]
3.4.4 Delete Line [DL]
3.4.5 Delete to End [DE]

3.5 String Search and Replace

3.5.1 Find String [FS or FIND]

3.5.2 Replace String [RS or REPLACE]
3.5.3 Find Next [FN]

3.5.4 Replace Next [RN]

3.5.5 Replace Global [RG or REPGLOB]

3.6 Block Commands

1 Mark [MK]

2 Copy Block [CB]

.3 Insert Block [IB]

4 Delete Block [DB]

5 Lower Case [LR]

6 Upper Case [UR]

7 Print [PR]

.8 Fill [FI or FILL]

9 Justify [JF or JUSTIFY]
.10 Extract [XT or EXTRACT]

wwuuuwwwww
.

3.7 File Commands

Help [HP or HELP]

Directory [DI or DIR]

Show File [SF or SHOWFILE ]
Insert File [IF or INSFILE]
Delete File [DF or DELFILE]
Save [SV or SAVE]

Append [AP or APPEND]

Write [WR or WRITE]

.

.

»

.
NN N N N N N
" e

.

Wwwwwwww
. . . .
. « e .
OO~ O Ut WN

3.8 Setting and Clearing Tab Stops

3.8.1 Delete Tabs [DT]

26
26

26

27
27
27
27
27
28

28

28
28
28
28
28

29

29
29
29
30
30

30

30
30
31
31
31
31
31
31
31
32

32

32
32
32
33
33
33
33
34

34

34



8.2 Set Tab [ST]
8.3 Clear Tab [CT]
8.4 Tab Stops [TS or TABS]

.

3
3.
3.
3.9 Miscellaneous

1 Command Mode [CM]
2 Duplicate [DU]

3 Merge [MG]
.4 Split [sP]

5 Center Line [CL]
6 Auto Indent [AI]
7 Line Numbers [LN]
8 Memory [MM]

9 Refresh [RF]

10 Tabify [TF]

11 Swap Disk [SD]

1

3.9
3.9
3.9
3.9
3.9
3.9.
3.9
3.9
3.9
3.9
3.9
3.9.12 Roll [RL or ROLL]

.
.
.
.
.
.
.
.
.
.

3.10 The EDIT Command [ED]
3.11 Terminating an Edit Session

3.11.1 Exit [EX or EXIT]
3.11.2 Exit/ [E/ or EXIT/]
3.11.3 QUIT [QT or QUIT]
3.11.4 QuiT/ [Q/ or QUIT/]
Chapter 4 Changing Editor Characteristics
4.1 Translating Keys to Commands
4.1.1 Translate [TR or TRANS]

4.2 Defining Macro Commands

4.2.1 Define Macro [DM or DEFINE]
4.2.2 Undefine Macro [UM or UNDEFINE]

34
34
34

35

35
35
35
35
35
35
36
36
36
36
36
36

37
37

37
38
38
38
39
39
40
40

40
42



Chapter 5 Editor Setup Files

5.1 Normal Commands

5
5
5
5
5

.

-

1
1
1
1
1

-

1
2
3

TABS
ROLL
AUTOINDENT

.4 TRANS
.5 DEFINE

5.2 Special Commands

L utn ot it i

* ¢ e e o o
MR DMNMNMNMN NN N

.

.

o e o o
O~ O PN

INIT
EXIT
START
CMD
HEIGHT
WIDTH
TERMINAL
CURSOR

5.3 Sample Setup Files

Appendix A Custom Setup

A.l Sample Terminal Setup

A.2 Special Cursor Addressing

Appendix B Standard 7-bit ASCII Character Set

43

44

44
44
44
44
44

45

45
45
45
46
46
46
46
47

48
55

55
56

59



Introduction

A text editor is simply a program that is used to enter text and save the
text to a file. Usually, text editors are classified into omne of two
categories, line or screen editors.

Line editors operate on text a line at a time. Typically, you must view
the text being edited by listing the lines that fall between two specified
line numbers. Usudlly, the text must be modified by typing commands which
operate on a specified line number. To change a character on a line, you
often must use a command rather than being able to position the cursor to the
bad character and correcting it.

Screen editors operate on a screen full of text at a time. A screen editor
gives you much more context when editing a file. You are able to move the
cursor around on the screen, changing the text by simply typing over the
incorrect text. Rather than thinking in terms of line numbers, a screen
editor allows you to scroll through the text a page at a time. A screen
editor makes editing much easier by providing more powerful commands and an
environment which allows you to see what you're changing as you change it.

The Blaise II text editor is a screen editor. It provides a very good tool
for entering your programs or other textual documents. Some of the features
found in word processors have been included in the Blaise II editor. Although
it was designed for program entry, you may find that it serves many of your
word processing needs as well.






Chapter 1

Blaise II Overview

This chapter provides a brief description of the major features of the
Blaise II text editor. It should provide you with a basic understanding of
how the editor operates. The actual use of the editor is more completely
explained in the following chapters.

Blaise II is a very powerful text editor with many commands and features.
It is designed so that you can change the characteristics of the editor to
conform to personal preferences. For example, you can change how commands are
mapped to keys. As supplied, the editor is internally configured to map the
most frequently used commands to the keyboard. These commands are executed by
typing control characters. It is suggested that the inexperienced user learn
how to use the editor with this standard configuration. The more experienced
user may want to alter the editor characteristics so that it operates similar
to some other familiar editor.

1.1 Setup Files

Before using the editor, it must be configured for the type of terminal
used by your computer. The editor uses what is called a setup file to perform
this configuration. A setup file is simply a file containing commands that
the editor understands. Each time the editor is executed, it reads the setup
file and configures itself based on the these commands. The commands in a
setup file tell the editor about the terminal's smart features. For computers
that use a known type of terminal, for example the Model 4 computer sold by
Radio Shack, the setup file is supplied. It is named SETUP with an EDT
extension. This is the default file that the editor loads if a setup file is
not specified when the editor is executed. The supplied setup file contains
only information about the commands that the terminal understands. If the
SETUP file is not supplied, you must create it using the SETEDIT utility.

The setup file may also contain commands that cause the editor to default
to some desired state. You may do things such as define how keys are mapped
to editor commands, or define new commands which are composed from the set of
built in commands. It is often desirable to at least map the cursor movement
commands to the arrow keys on your keyboard. If your keyboard has function
keys, you may want to utilize them as well. There are no standard characters
generated by arrow keys or function keys. In most cases, the character
generated on one terminal will not be the same as that generated on a terminal
of a different type. You will have to look in the documentation for your



Blaise II Overview Chapter 1

particular terminal to see what characters are generated by these keys in
order to map them to editor commands.

There may be a sample setup file included on your master disk. The sample

setup file maps the terminal's arrow keys to cursor movement commands. Other
commands may be mapped to provide better utilization of a specific keyboard.

1.2 The SETEDIT Program

The SETEDIT program is a utility used to create setup files for use with
the editor. This utility provides a menu of commands which allow various
setup file-related operations to be performed. If a setup file is not
supplied with your master disk, this utility must be used to create the setup
file before the editor can be executed. The SETEDIT utility displays the
following menu.

= define terminal characteristics
= read a text format setup file
= write a binary setup file

input a binary setup file
output a text setup file
display help information

= exit

[

O =
i

At a minimum, the editor requires a setup file that contains terminal
information. This information tells the editor about the smart features of
the terminal. The editor uses this information to display text in the most
efficient way possible. The T command provides a list of commonly used
terminals. If your system uses one of the listed terminals, then terminal
definition is accomplished simply by selecting the proper terminal.

The editor requires binary formatted setup files. Once the proper terminal
has been selected, a binary setup file may be created using the W command.
The editor uses the file named SETUP (with an EDT extension) as the default
setup file. When the editor is executed, it loads this file if no setup file
is specified. Once the terminal information is written to this setup file,
the editor can be used.

If you wish to view or modify the terminal information created by the
SETEDIT utility, you may use the O command to output the information in text
(readable) form. It is important to note that the editor can edit text
formatted files only. However, the setup files used to configure the editor
must be in binary format,

The SETEDIT utility has the ability to read either text or binary formatted
setup files with the R and I commands respectively. A binary formatted setup
file must have been previously created by SETEDIT. A text formatted file may
be created using the editor. The SETEDIT utility may be used to combine



Chapter 1 Blaise II Overview

multiple setup files and terminal information into ome single setup file. For
example, after creating the binary setup file containing the terminal
description only, the editor may be used to create a text formatted setup file
containing other commands. Then the SETEDIT utility can be used to read both
the files and write the combined information out to another file.

1.3 Text Buffer Management

The editor maintains a fixed size buffer for storing text. The buffer will
hold approximately 15000 characters on a 64K system. All editor commands
except for specific file commands operate only on the text in this buffer.
When editing very large files, the file must be edited a section at a time.
Starting at the beginning of the file, a section is loaded into the text
buffer. Before loading ancother section of the file into the buffer, buffer
space must be made available by writing the text out to a work file. Then the
next section may be loaded into the buffer. This process may be repeated
until the whole file has been loaded and edited,

When editing an existing file, the editor loads the first 100 lines only.
This leaves ample buffer space for adding more lines and performing the
various editing functioms. If the file is longer than 100 lines, the APPEND
command may be used to load more text from the file into the buffer. With
this command, you specify how many lines to copy from the file to the buffer.
The copying begins one line past the last line previously loaded from the
file. The text being copied from the file is appended to the end of the text
in the buffer. 1If the file is very large, it is possible for the buffer to
become full. 1If this happens, a MEMORY EXHAUSTED message is displayed. The
WRITE command must then be used to write some of the text in the buffer back
out to a work file. With this command, you specify how many lines to copy
from the buffer to the work file., The copying begins with the first line in
the buffer and continues until either the buffer is empty or the specified
number of lines have been written. Once lines have been written from the
buffer to the work file, they may not be edited again during the current edit
session. However, the EXIT/ command can be used to terminate an edit session
if you wish to edit the lines that have already been writtemn to the work
file. The EXIT/ command leaves the editor loaded. Then the APPEND command
can be used to load lines starting at the beginning of the file. The
following diagram illustrates the editing process.

edit text

1f the editor is exited before the entire file has been loaded into the
buffer, the editor will copy the remaining lines in the original file to the
work file. The work file is then renamed as the original and the original is
either deleted or renamed as a backup file.



Blaise II Overview Chapter 1

1.4 The Work File

The editor creates temporary files during an edit session. These temporary
files are called work files. The main work file is a copy of the file being
edited. Its purpose is to prevent a system crash from damaging the original
file. If such a crash occurs during an edit session, the original file is
left unchanged. The main work file is named TOnl where n is either 1 or 2
depending on the level of the edit. .The level is 1 when editing a single
file. 1If the EDIT command is used during an edit session, a second work file
is created, level 2. The extension TMP is appended to the work file names.

After successfully exiting, if the work file is on the same disk as the
original file, then the work file is renamed as the original and the original
file is either deleted or renamed as a backup file. If the work file is on a
separate disk from the original, then it is copied over the original after
which the work file is deleted.

The work file is placed on the same drive as the original file if a drive
is specified with the file name when the editor is executed. If you are
creating a new file and the WRITE command is used, the work file is placed on
the default drive. The default drive is determined by the operating system.
When the work file is on the same drive as the original, there must be enough
free disk space to accomodate two copies of the original file.

The editor block movement commands also cause the editor to create a work
file. This work file is used as temporary storage for the block of data being
moved. The name for this work file is TOn3 where n is either 1 or 2 as
above. The editor does not delete this work file.

1.5 Compose Mode

The editor has two modes of operation, compose mode and command mode. When
the editor is executed, it starts out in compose mode. In this mode, you may
type in text much the same way as you would with a typewriter. The text that
you type is stored in the text buffer. While in this mode, you have access to
many editor commands. For example, there are commands to move the cursor
around on the screen. These commands are mapped to specific control
characters which are generated from the keyboard. A control character is
generated by holding down the key labeled CTRL while pressing an alphabetic
key. For example, CTRL X will cause the cursor to move down one line, CTRL G
deletes the character under the cursor, etc. Therefore, compose mode allows
you to enter text and to move around in the text performing various operations
using control characters.



Chapter 1 Blaise II Overview

1.6 Command Mode

One control character is mapped to a command that causes the editor to
switch from compose mode to command mode. When CTRL Z is typed, the editor
displays angle brackets <> at the bottom left corner of the screen and goes
into command mode.

Command mode provides the ability to execute any command in the editor.
Since not all editor commands are mapped to control keys, it is necessary to
go into command mode to execute the unmapped commands. All commands in the
editor, whether mapped to keys or not, have a two character mnemonic. While
in command mode, the commands are executed by typing the two character
mnemonic followed by the <enter> key.

Command mode provides a convenient alternate method of executing editor
commands. The editor has so many different commands that it is impossible to
map all commands to keys in a manner that is logical and easily remembered. A
mnemonic is often easier to remember than a control character. The two
character mnemonic reflects the actual function of a particular command while
a control character sequence may not.

Command mode is entered from compose mode by typing CTRL Z. Angle brackets
appear at the bottom left corner of the screen and the cursor is placed to the
right of the brackets. Any command may then be executed by typing its two
character mnemonic followed by the <enter> key. If there are typing errors,
CTRL H may be used to backspace and make correctioms. Once the command has
finished execution, the editor returns to compose mode. The screen will
reflect any changes caused by the execution of the command. To return to
command mode, a CTRL Z must be typed once again.

A convenient way of operating the editor is to execute often used commands
from compose mode and seldom used commands from command mode. For example,
the cursor positioning commands (cursor right, cursor left, cursor up, cursor
down) are used constantly. It would be inconvenient to execute these commands
from command mode. On the other hand, the directory command (DI) is seldom
used. Rather than try to remember what control sequence it is mapped to, it
may be easier to remember the mnemonic DI and execute this command from

command mode.






Chapter 2

Getting Started

The text editor is the command file named EDIT. There are also three help
files named with the extension HLP. The help files contain information about
the editor commands and may be viewed during an edit session. They are not
necessary for the operation of the editor. They simply provide helpful
information if needed. The command file named SETEDIT is used for creating
editor setup files. The editor cannot be executed without a setup file being

present. There may be an editor setup file named SETUP and possibly another
setup file named SAMPLE. Both have EDT extensions. These files are supplied
for computers with known terminal types. The SETUP file contains only
terminal information. The SAMPLE setup file contains commands to remap some
of the editor commands in addition to the terminal information.

Before beginning, be sure to make a backup copy of the supplied master
disk. Place the master disk in a safe place and use the backup copy.

2.1 Editor File Configuration

The EDIT command file may be placed in any drive. On some operating
systems (eg. CP/M), the default editor setup file (SETUP) and the help files
(HLP extensions) must be placed in the system drive. It is suggested that
EDIT, SETEDIT, SETUP if present, and all the help files be copied to a disk
containing an operating system.

2.2 Terminal Configuration

A setup file called SETUP (with extension EDT) must be created before the
editor may be used. On some systems, this file may be supplied. 1If so, then
this section may be skipped.

The SETEDIT utility is used to define the characteristics of your
particular terminal. The SETEDIT utility contains built in tables for the
most widely used terminals. 1If you are using one of these terminals, then
defining the terminal characteristics is a simple matter of selecting the
proper terminal from a menu.



Getting Started

1)

2)

3)

Chapter 2

The following steps will guide you through the creation of the editor setup
file.

Type SETEDIT <enter> to execute the utility

A menu will be displayed followed by a prompt to
make a selection. Type T <enter> to define the
terminal characteristics.

A list of terminals will be displayed, each preceded

by a number. Type <enter> to view the remainder of the
built-in terminal types. You will then be prompted to
select a terminal. If your terminal is listed, then
type in the correct number and proceed to step 5.

Otherwise, you must select either CUSTOM or SPECIAL.

If your terminal is memory mapped video, then SPECIAL
should be selected. Memory mapped video terminals will
require some assembly language drivers to be written.
See the appendix. If SPECIAL is selected, then proceed
to step 4.

If you have an RS232 terminal, then CUSTOM should be
selected. You will then be prompted for the type of
cursor addressing. You must specify either binary or
ASCII. The cursor is positioned to a particular
location on the screen by specifying a row and column
number, Some terminals use a single character to
specify the row or column number. This is binary
addressing. Other terminals expect a sequence of ASCII
digits to specify the row or column. This is ASCII
addressing. Normally, the 0 row or column position is
not addressed with a 0 value. The next prompt asks
for an offset value corresponding to row or column 0.

The next prompt is for what comes first, the row or
column address? You will then be prompted for the
character sequence preceding the row/column address.
Next come two prompts for the character sequence between
the row/column addresses and following the row/column
addresses. If your terminal does not require any such
sequence, simply type <enter> to these two prompts.
Proceed to step 4.

- 10 -



Chapter 2

4)

5)

6)

You will be prompted for information about your terminal's
characteristics and will need your terminal manual to
answer the questions. The first two prompts are for
the HEIGHT and WIDTH of your terminal. The height

is the number of lines on the screen. The width is the
number of characters on a line. The next sequence of
prompts ask "does your terminal have this function?".
If you answer yes, then you will be prompted to enter
the character sequence to perform that particular
function. See the example in the appendix. The
following is a list of the functions which the editor

supports.

clear to end of screen - clear the screen from the current
cursor position to the end of the

screen.

clear to end of line - clear the line from the current
cursor position to the end of line.

insert line — insert a blank line at the current
cursor positon.

delete line ~ delete the line at the current
cursor positon.

delete character —~ delete the character at the current
cursor position.

enter insert mode - cause the terminal to insert all

subsequent characters at the
current cursor position.

exit insert mode ~ cause the terminal to stop
inserting.

scroll 1 line down - shift each line on the screen down
by one line.

insert 1 character - insert a character at the current
cursor position.

scroll 1 line up - shift each line on the screen up

by one line.

The main menu is now redisplayed. Select option W to
write a binary setup file and you will be prompted for
a file name. Type the name SETUP followed by the
extension EDT and press the <enter> key. The file will
be written to disk. A drive specifier may also be
included as part of the file name to place the file on
a specific drive.

The main menu is once again displayed. Type E <enter>to
exit the program. The setup file has been created and
the editor may now be used.

- 11 -

Getting Started



Getting Started Chapter 2

2.3 Executing the Editor

The editor may be executed in several different ways. When creating a new
file, simply type EDIT <enter>. The editor will configure itself with the
default setup file and display *EOB at the top left corner of the screen
indicating an empty text buffer. You may then insert one or more blank lines
and start entering text.

The second way of executing the editor is to type EDIT FILENAME {enter>,
where FILENAME is the name of some pre-existing ASCII text file. A drive
specifier may also be included in the file name. The editor will configure
itself with the default setup file and then load the first 100 lines from the
specified file. The message LOADING... will be displayed at the bottom of the
screen. Once the first 100 lines have been loaded, the editor will display a
screen full of text starting with the first line and position the cursor at
the top left corner of the screen. You may then begin editing.

The third way of executing the editor is to specify two file names in the
form EDIT FILENAMEl FILENAME2 <enter>, where FILENAMEl is the name of the file
to edit and FILENAME2 is the name of a setup file for the editor to use in
configuration. As noted earlier, the editor by default loads the setup file
named SETUP (with the extension EDT).

By specifying the setup file on the command line, the editor may be forced
to use a setup file of some other name. This is convenient if you want the
editor to default to different states, depending on the type of editing being
performed. Drive specifiers may be included in either file name.

- 12 -



Chapter 2 Getting Started

2.4 Basic Editor Commands

All the editor commands are explained in the following chapter. This
section explains how some of the basic editor commands are mapped to the
keyboard.

The editor has a large number of commands. Some of the commands are
frequently used while others are used only occassionally. The commands which
are used most often have been mapped to the keyboard. These commands may be
executed while in compose mode by typing control characters. The remainder of
the commands must be executed by entering command mode and typing a two
character mnemonic. Command mode is entered by typing CTRL Z. Command mode
allows you to execute one command and then the editor returns to compose
mode. While in command mode, typing CTRL Z will abort command mode and return
the editor to compose mode.

When creating a new file, the editor starts out with an empty text buffer.
The symbol *EOB appears at the upper left corner of the screen. Before
entering text, one or more blank lines must be inserted into the buffer. The
insert line command has been mapped to CTRL N. Each time CTRL N is typed, a
blank line is inserted into the buffer. Once the buffer contains lines, you
may begin entering text. The <enter> key will cause the cursor to go to the
beginning of the next line.

The editor defaults to overwrite mode. In overwrite mode, the editor will
write directly over the character under the cursor. If there is text to the
right of the cursor, the text will be changed as you type. The other mode is
insert mode. There are two commands that cause the editor to enter insert
mode. When CTRL V is typed, the editor temporarily enters insert mode. When
characters are typed, they are inserted at the current cursor position. All
characters to the right of the cursor will shift one character to the right
each time a character is typed. When any editor command is executed, such as
{enter>, the editor goes back into overwrite mode. The editor may be
permanently placed in insert mode by entering command mode and typing IM
{enter>. It may be placed back in overwrite mode by entering command mode and
typing IM <enter> once again. This command toggles the editor from overwrite
mode to insert mode and vice versa.

When the editor is in permanent insert mode, the <enter> key will insert
carriage control. If the <enter> key is typed at the end of a line of text,
the editor will insert a blank line following the current line and place the
cursor at the beginning of the blank line. If the <enter> key is typed while
in the middle of a line of text, the line will be split with the characters to
the right of the cursor being placed on the inserted line. Insert mode is
most useful when creating new text. It prevents the need for inserting blank
lines in the text buffer before entering the text. When the buffer is empty,
the <{enter> key may be typed to insert one blank line and a new line is
inserted automatically each time <enter> is typed thereafter.

- 13 -



Getting Started Chapter 2

The most frequently used editor commands are the cursor movement commands.
These commands have been positionally mapped on the left side of the
keyboard. The basic cursor movement commands are cursor right (RT), cursor
left (LF), cursor up (UP), and cursor down (DN). These commands are mapped to
the D,S,E, and X keys respectively. For example, typing CTRL D will cause the
cursor to move one character to the right. Moving the cursor by word is a
frequently used command. The (FW) command will move the cursor forward one
word, while the (BW) command moves the cursor back one word. These commands
have been mapped to the F and A keys respectively. The roll up command (RU)
will scroll the text toward the beginning of the text buffer while the roll
down command (RD) scrolls the text toward the end of the buffer. The number
of lines scrolled is defaulted to 3 lines less than the size of the screen.
These commands have been mapped to the R and C keys respectively. The
following diagram illustrates the positional mapping used for these commands.

o I +
I E || R |
[ === | [=mme—m |
| up | | RrU |
o m——— + Am————— +
- + t————— + Fm————— O +
[ a |1 s |1 o || F |
[ e [ |- | == | === I
| Bw | | LF | | RT | | Fw |
to————— I + dmm———— I +
e + m————— +
I x |1 ¢ |
[ ==mmem | |=mmm=- |
| by | | rRD |
R + Ao +

As noted earlier, command mode (CM) is mapped to Z and insert character
mode (IC) is mapped to V. The delete character command (DC), which deletes the
character under the cursor, is mapped to G. The delete word command (DW),
which deletes the current word under the cursor, is mapped to T. The delete
line command (DL), which deletes the current line under the cursor, is mapped
to Y. Since CTRL H is typically associated with back space, it has been mapped
to perform the cursor left command, same as CTRL S.

In addition to the single control character mapping, some commands have
been mapped to a two character sequence. CTRL Q is used as a prefix for the
commands labeled inside parentheses in the next diagram. After typing CTRL Q,
these commands may be executed by typing the single character alone, or by
typing CTRL <character>. For example, you could type CIRL Q, R or CTRL Q, CTRL
R.

The top of buffer command (TP) causes the screen window to be moved to the
top of the text buffer. The bottom of buffer command (BB) causes the screen
window to be moved to the bottom of the text buffer. The beginning of line
command (BL) causes the cursor to move to the leftmost column on the screen.

- 14 -



Chapter 2 Getting Started

The end of line command (EL) causes the cursor to move one character past the
right most character on the line. The center line command (CL) causes the
current line to be centered on the screen. The home command (HM) causes the
cursor to be positioned at the top left corner of the screen. The editor
maintains a buffer for storing the last deleted line. The undelete line
command (UL) will insert the last deleted line at the current cursor
position,

o ——— + Fr————— + e ——— + - + tm————— +
I Q | I E [l ®rR || T || Y |
[ == I [==m— I | == I |
|prefix]| | vp | |ru(tP)| | DW | |DL(UL)]
o + R + b + pm————— + Am————— +
Fmmm—— + Am———— + Am———— + e + F————— + Am————— +
I a |l s |1 o || F || ¢ |1 u |
| = I | ] | == [ ]=m=——- [ I
I Bw | |LF(BL)| [RT(EL)| |FW(cL)| | DC | |LF(EM)]
e + e I + oA + A—————— + Fm————— +
e + - + e + dm————— +
Lz || x 11 ¢ |1 v |
| === [ == s | = l
| cv | | boN | |rD(BB)| | 1C |
o ———— + pmm———— + e + f————— +

Other frequently used commands have been mapped to the right side of the
keyboard. Since CTRL I generates the same character as the tab key, it has
been mapped to the tab command (TB). Tabs are defaulted to 4 spaces. The back
tab command (BT) has also been mapped to I. Back tab is executed when the CTRL
Q prefix is used (ie. CTRL Q, I or CTRL Q, CTRL I).

The find next string command (FN) which searches for the next occurrence of
a string has been mapped to J. Before executing FN, the find string command
(FS), which defines a string and then searches for it, should be used. The FS
command has been mapped to J with the Q prefix. The replace next string
command (RN), which replaces the next occurrence of one string with another,
has been mapped to L. Before executing RN, the replace string command (RS),
which defines a string to search for and another string to use as replacement,
should be used. The RS command has been mapped to L with the Q prefix.

The split line command (SP), which causes the current line to be split into
two lines at the cursor position, has been mapped to 0. The merge line command
(MG), which causes the line following the cursor line to be merged with the
cursor line, has been mapped to P. The delete to end of line command (DE),
which deletes the current line from the cursor to the end of the line, has
been mapped to K. The duplicate line command (DU), which duplicates the line
above the cursor starting at the current cursor column, has been mapped to U.

As noted earlier, the insert line command (IL) has been mapped to N. CTRL M

generates the same character as <enter> and is therefore equivalent. The
mnemonic used for <enter> is (NL) which stands for next line.

- 15 -



Getting Started Chapter 2

e + e + m————— I + m————— +
Q| v Il 1 1 o Il p |
| = f | == | |- e P |
[prefix| { pu | [TB(BT)| | sp | | MG |
o e + o e + e + e ——— + e +
o + F—————— + e———— +
g 11 & 1 n |
[ I | e |
IFN(FS)| | DE | |RN(RS)]|
e e e + dm————— + h———— +
Fomm——— + e ——— +
S A I B O
[~mmmmm | s l
i 1L | | NL |
o e + o ———— +

There are several commands related to block operations. These commands
have been mapped mnemonically, rather than positionally. (ie. the commands
are mapped to keys that correspond to the first letter of the command
mnemonic) The block commands must be prefixed by CTRL B. Simply type CTRL B,
CTRL <key> or CTRL B, <key> where <key> is the key to which the specific
command has been mapped. For example, CTRL B, M executes the mark command.

Any block operation must have a defined block of text to which the
operation is applied. The mark command (MK) places an invisible mark at the
line containing the cursor. Any block operation will be applied to the block
of text between the marked line and the line currently containing the cursor.
All block operations, except UR and LR occur on line boundaries. (ie. the
column position of the cursor has no effect)

The three fundamental block operations are copy block (CB), imsert block
(IB), and delete block (DB). The copy block command copies the text within the
marked region (ie. the text between the marked line and the line containing
the cursor) to a temporary file. The insert block command inserts the text in
the temporary file into the text buffer prior to the the line containing the
cursor. The delete block command deletes the text within the marked region.

The print block command (PR) prints the text in the marked region. A line
printer must be connected to use this command. The fill command (FI) requires
two parameters, the left and right margins (column numbers). The fill command
rearranges the text within the marked region so that it fits within the
specified margins. The justify command (JF) also requires the same two
parameters. The justify command rearranges the text on each line within the
marked region so that the text aligns at both margins. This will cause extra
blanks to be placed between words.

The upper case and lower case commands are the only block commands that
operate on character boundaries rather than line boundaries. The upper case
command (UR) makes all characters within the marked region upper case
characters. The lower case command (LR) makes all characters within the
marked region lower case characters.

- 16 -



Chapter 2 Getting Started

There are two other very useful commands associated with the marked line
and the line containing the cursor. The swap command (SW) swaps the marked
line and the line containing the cursor. The cursor line becomes the new
marked line and the cursor is positioned to the previously marked line. This
command is useful in moving back and forth between two positions in the text
buffer. The go to mark command (GM) causes the cursor to be positioned to the

marked line.

2.5 Editor Help Files

The files named with HLP extensions are editor help files. These files
contain information on editor commands. There are help files on the following
subjects: (HELP, KEY, and CMD). These files may be viewed if you forget how to
execute a particular command.

HELP displays information about the other two help files. KEY shows how
the commands are mapped to keys. CMD lists all the editor commands in
alphabetic order.

The help files may be viewed by typing CTRL Z to enter command mode and
then typing HELP <enter>. When prompted for the subject, type in one of the
above subjects followed by the <enter> key. If the <enter> key is typed
without specifying a subject, the HELP file will be displayed. The help files

must be on the system drive.

When viewing a help file, you may scroll downward towards the end of the
file by typing CTRL C. To scroll back towards the beginning of the file, type
CTRL R. To resume the edit session, type CTRL Z.

2.6 Swapping Disks

Sometime during an edit session, you may need to access files which are not
on any of the disks currently in the drives. It is possible to swap disks
during an edit session for such situations. On some systems (eg. CP/M), the
swap disk editor command (SD) must be executed each time the disks are
swapped. Type CTRL Z to enter command mode and then type SD <enter>.

When the editor is executed and has finished loading the setup file, the
EDIT command file and the setup file are no longer needed during an edit
session. The other files involved include the original file being edited and
the editor work files. These files may be swapped as long as the following
rules are followed.

- 17 -



Getting Started Chapter 2

1) The original file must be swapped back before an APPEND
operation.

2) The main work file must be swapped back before a WRITE
operation.

3) The original file and main work file must be swapped
back before an EXIT or SAVE operation.

2.7 Exiting the Editor

There are two commands that can be used to terminate an edit session. Both
are executed from command mode. Type CTRL Z to enter command mode. Angle
brackets <> will appear at the lower left corner of the screen.

The EXIT command (EX) should be used if you wish to save the text in the
buffer to a disk file. The EXIT command requires one parameter, the name of
the file to which the buffer will be written. Simply type EX <enter>. The
editor will prompt you to enter the name of a file, <EXITPFILE:. If creating a
new file, a file name must be entered. The file name can include a drive
specifier to force the file to a specific drive. Otherwise the file will be
written to the default drive. If editing an existing file, you may enter a
file name or simply press the the <enter> key. If no file name is entered,
the buffer is written to the file specified when the editor was executed.

Before writing the buffer to the file, the editor prompts you with
<EXIT>BACKUP:. You can answer this prompt by typing either Y for yes or N for
no. If Y <enter> is typed, the editor creates a backup file by renaming the
original file with the extension BAK. This only has an effect if editing an
existing file. If you answer the prompt with N <enter>, no backup file is
created. Simply pressing the <enter> key to this prompt is equivalent to
typing Y <enter>.

The QUIT command (QT) should be used if you wish to exit the edit session
without saving the text buffer. The QUIT command requires one parameter,
whether or not you really want to terminate the edit session. Simply type QT
{enter>. The editor will prompt you with <QUIT>REALLY?. Type Y <enter> if you
really wish to terminate the edit session without saving the buffer., Type N
{enter> to resume the edit session.

Both the EXIT and QUIT commands return control to the operating system. If
you wish to edit several different files at one time, the EXIT/ and QUIT/
commands should be used. These commands perform the same functions as EXIT
and QUIT except that the editor remains loaded. Simply type EX/ <enter> or
QT/ <enter> to execute these commands. After terminating the current edit
session, the editor displays the *EOB symbol at the top left cormer of the
screen. You can then create a new file or edit an existing file. The APPEND
command can be used to load in an existing file. Type CTRL Z to enter command

- 18 -



Chapter 2 Getting Started

mode and type AP <enter>. The editor prompts for the number of lines you wish
to append, <APPEND>LINES:. Enter the number of lines you wish to load from a

file.

The next prompt, <APPEND>FILE:, asks for the name of the file.

2.8 Sample Edit Session

The following steps show how a new file is created using the editor. Then
the editor is used to edit the previously created file. Make sure the editor
setup file and help files are on the system drive before beginning.

1.

2.

Type EDIT <enter>

When *EOB appears at the top left corner of the screen, type CTRL Z to
enter command mode. Type IM <enter> to enter permanent insert mode.
Then press the <enter> key.

Now simply type in the text. When you press the <enter> key, a blank
line is inserted and the cursor is positioned to the beginning of the
next line.

Several commands may be used to move around in the text to make changes
or corrections. The previous section explained the commands which are
mapped to keys. These commands are executed by holding down the CTRL
key while pressing one of the alphabetic keys. For example, CTRL S
moves the cursor left one character. Some of the commands must be
prefixed by CTRL Q. For example, typing CTRL Q and then the S character
will cause the cursor to go to the beginning of the current line.

If you forget how the commands are mapped to keys, type CTRL Z. Angle
brackets will appear at the bottom left corner of the screen. Type HELP
KEY <enter>. The screen will display help information about how the
commands are mapped to keys. Type CTRL C to move forward in the help
file. Type CTRL R to move backward. Type CTRL Z to resume the edit
session.

-19 -



Getting Started Chapter 2

10.

In permanent insert mode, every time a character is typed it is inserted
at the current cursor position. When the <enter> key is pressed, all
text to the right of the cursor is moved to the next lime. If you would
rather that this did not occur, type CTRL Z to enter command mode and
type IM <enter> to terminate permanent insert mode. Then when a
character is typed, it is written over the character under the cursor
rather than being inserted. The <enter> key then merely positions the
cursor to the beginning of the next linme. The editor will not permit
the cursor to be moved pass the *EOB symbol. Type CTRL N to insert more
blank lines when the *EOB symbol is reached.

Once you have finished entering the text, type CTRL Z to enter command
mode. Type EXIT <enter>. You will be prompted with <EXIT>FILE:. Type in
a valid file name. Drive numbers may be used as part of the file name.
You will then be prompted with <EXIT>BACKUP? Simply press the <enter>
key. Your file will be saved and the editor will exit to the operating
system.

If you wish to modify the file, type EDIT followed by the filename used
in step 7. The editor will load in the first 100 lines of the file. If
fewer lines than this were in the file, the whole file will be loaded.
Use the editor commands to move around in the text, making
modifications. If not all lines were loaded into the text buffer, type
CTRL Z to enter command mode and type APPEND 100 <enter>. One hundred
more lines will be loaded from the file into the text buffer. If the
buffer becomes full, (indicated by MEMORY EXHAUSTED message at the
bottom of the screen) type CTRL Z to enter command mode. Type WRITE 100
{enter> and the first 100 lines in the buffer will be written to the
editor work file. The lines written may not be edited again during the
current edit session. After freeing buffer space with the WRITE
command, more lines may be appended into the text buffer. When finished
making changes, type CTRL Z to enter command mode.

If you wish to save your changes type EXIT <enter>. You may simply press
the <enter> key to answer the following two prompts, <EXIT>FILE: and
<EXIT>BACKUP?. The editor will save your changes to the file specifed in
step 8. However, before doing so, it will rename the original file
created in step 7 to become a backup file. The same prefix of the file
name is used with the extension BAK to represent that it is a backup
file. The editor by default creates this backup file. To prevent its
creation, you must type N to the <EXIT>BACKUP? prompt.

If you wish not to save your changes, type QUIT <enter>. When prompted

with <QUIT>REALLY?, type Y <enter>. The editor will exit to the
operating system and the file created in step 7 will be left unchanged.

- 20 -



Chapter 3

Editor Commands

The previous chapter explained only those commands which are internally
mapped to the keyboard. The mapped commands may be executed by typing the
appropriate control characters. This chapter explains all the editor commands
except for a few special setup file commands. All these commands may be
executed from command mode.

CTRL 7 causes the editor to enter command mode. While in command mode,
CTRL H may be used to backspace and correct typing errors . Commands are
executed when the <enter> key is pressed. CTRL Z may be used prior to
pressing the <enter> key to abort command mode and reenter compose mode.

A1l commands, some of which require parameters, have an associated two
character mnemonic. 1In addition, the commands which require parameters have
command names which may alternatively be used in place of the mnemonic. For
example, the find string command requires a string parameter. The find string
command may be executed from command mode by typing either FS or FIND,
followed by the <enter> key. Abbreviations are also accepted. For example,
simply typing F <enter> will execute the FIND command.

3.1 Command Parameters

When executing commands which require parameters, you may specify the
parameters after the command name or you may simply type the command name
without specifying the parameters. If the parameters are not specified, the
editor will prompt for the required parameters. This is the case for key
mapped commands which require parameters (eg. the FIND string command). The
prompt will contain the long form of the command name inside angle brackets,
followed by the parameter being requested. For example, typing FS <enter>
while in command mode will result in the prompt <FIND>STRING:. You must then

type in the string.

There are three types of parameters that are used for commands. Integer
parameters are required for commands such as FILL (FI) and JUSTIFY (JF). With
these commands, you must specify the columns to use as the left and right
margins. For example, FILL 10 70 or JUSTIFY 5 75 might be used. When
specifying integer parameters, blanks must be used to separate the individual
parameters. Some commands have parameters which require a yes/no answer.
These may be answered by typing YES or NO or by simply typing Y or N. Both
upper and lower case are accepted. The third type of parameter is a string.

- 21 -



Editor Commands Chapter 3

There are multiple ways of specifying string parameters. They may be quoted
using either single or double quotes, or they may be unquoted. For example,
either FIND 'ABC' or FIND "ABC" or FIND ABC could be used to locate the string
ABC.

When specifying multiple string parameters on the command line, all but the
last string parameter must be quoted. If the editor is expecting a string
parameter and the next parameter is a non-quoted string, it will treat all
characters to the end of the command line as part of the string. This may or
may not be what was intended. For example, the replace string command takes
two string parameters, a string to search for and one to use as replacement.
This command could be executed in the following ways.

(1) RS 'ABC' BCD or (2) RS 'ABC' 'BCD' or (3) RS ABC BCD

Examples 1 and 2 are equivalent and would execute as intended. However, in
example 3, the editor would use ABC BCD as a single string and then prompt for
the next string.

In some circumstances, the quoted string is different from the unquoted
string. The editor uses all characters in an unquoted string as they appear.
However, it gives special meaning to certain characters in a quoted string.
The # symbol is used to signify that a two character hex digit follows. The
editor converts such 3 character sequences into a single character. For
example, '#41' is converted to the single character A. The = symbol is used to
signify that a two character command mnemonic follows. The editor converts
this 3 character sequence into an internal command code. For example, '=RS'
is converted to the internal editor code for the replace string command. The
© symbol is used to represent the CTRL key. When this symbol is encountered,
the editor converts the next printable character into the corresponding
non-printable control character. For example, '“Q' is converted to the single
ASCII character generated by CTRL Q. It is equivalent to '#11' (hexadecimal
11). See the ASCII character chart in the appendix.

If one of these special symbols is needed as a character in a quoted
string, the symbol must appear twice. For example, '==' is equivalent to the
single character =. The sequence '“"' however represents CTRL ~. Use '#5E' to
represent the “ character. Representation of the quote character itself
within a string is handled in the same manner. For example, the string ''''
represents a single quote character. An alternative is to use double quotes
around a string that requires the single quote character, "'",

In certain situations, such as defining a macro command (discussed in the
following chapter), it may be necessary to use a quoted string within another
quoted string. The editor accepts both single and double quotes as string
delimiters. The case where you need a string within a string may be handled
by using double quotes to delimit the outermost string, and single quotes to
delimit the inner strings (eg. "RS 'cba' 'abe'").

- 22 -



Chapter 3 Editor Commands

3.2 Cursor Positioning Commands

The cursor positioning commands are commands which when executed result in
the cursor being positioned to a different location within the text buffer.
3.2.1 New Line [NL]

The NL command moves the cursor to the beginning of the next line in the
buffer. If in insert mode, the NL command moves all characters to the right
of the cursor to the next line.

3.2.2 Right [RT]

The RT command moves the cursor one character to the right.

3.2.3 Left [LF]

The LF command moves the cursor one character to the left.

3.2.4 Up [UP]

The UP command moves the cursor one line towards the top of buffer.

3.2.5 Down [DN]

The DN command moves the cursor one line towards the bottom of the buffer.

3.2.6 Tab [TB]

The TB command moves the cursor right to the next tab stop. If in
permanent insert mode, the tab command moves all characters to the right of
the cursor to the next tab stop.

- 23 -



Editor Commands Chapter 3

3.2.7 Back Tab [BT]

The BT command moves the cursor left to the next tab stop.

3.2.8 Forward Word [FW]

The FW command moves the cursor right to the beginning of the next word. A
word is a sequence of non-blank characters.

3.2.9 Backward Word [BW]

The BW command moves the cursor left to the beginning of the next word. A
word is a sequence of non-blank characters.

3.2.10 End of Line [EL]
The EL command moves the cursor one character past the last character on
the line.

3.2.11 Beginning of Line [BL]

The BL command moves the cursor to the left edge of the screen.

3.2.12 Home [HM]

The HM command moves the cursor to the top left corner of the screen.

3.2.13 Roll Up [RU]

The RU command moves the cursor towards the top of the buffer. The number
of lines moved is set by the ROLL command. The default is 4 lines less than
the height of the screen

3.2.14 Roll Down [RD]

The RD command moves the cursor towards the bottom of the buffer. The
number of lines moved is set by the ROLL command. The default is 4 lines less

than the height of the screen

- 24 -



Chapter 3 Editor Commands

3.2.15 Top of Buffer [TP]

The TP command moves the cursor to the first line in the buffer.

3.2.16 Bottom of Buffer [BB]

The BB command moves the cursor to the last line in the buffer.

3.2.17 Go to Mark [GM]

The GM command moves the cursor to the marked line. The MK command is used
to mark a line.

3.2.18 Swap [SW]

The SW command swaps the cursor and the marked line. The cursor is moved
to the marked line and the marked line becomes the line containing the cursor
at the time the command is executed. The MK command is used to mark a line.

3.2.19 Set Row [SR or ROW]

The SR command requires a parameter. The parameter 1s a row number of the
screen. The SR command then moves the cursor to the specified row. For
example, SR 0 <enter> moves the cursor to the top line of the screen.

3.2.20 Set Column [SC or COL]

The SC command requires a parameter. The parameter is a column number of
the screen. The SC command then moves the cursor to the specified column.
For example, SC O <enter> moves the cursor to the left edge of the screen.

3.2.21 Position [PO or POSITION]

The PO command requires two parameters. The first parameter is the row
number of the screen. The second parameter is the column number of the
screen. The PO command then moves the cursor to the specified row and column
of the screen. For example, PO 0 0 <enter> moves the cursor to the top left
corner of the screen.

_25_



Editor Commands Chapter 3

3.2.22 Minus [MI or -]

The MI command requires a parameter. The parameter is the number of lines
to move the cursor. The MI command then moves the cursor the specified number
of lines towards the top of the buffer.

3.2.23 Plus [PL or +]

The PL command requires a parameter. The parameter is the number of lines
to move the cursor. The PL command then moves the cursor the specified number
of lines towards the bottom of the buffer,

3.2.24 Show Line(SL or SHOWLINE]

The SL command requires a parameter. The parameter is the number of a line
in the buffer. The first line in the buffer is number 1. The SL command then
moves the cursor to the specified line. All cursor movement commands except
for the SL command apply only to the text buffer. The SL command will also
accept a line number corresponding to a line in the file being edited. When
editing a large file, the SL command can be used to quickly get a specific
line loaded into the buffer. If the buffer cannot hold all the lines up to
the specified line, the prior lines are written to the work file and the
specified line becomes the first line in the buffer.

3.2.25 Horizontal Scroll [HS or HSCMOLL]

The HS command requires a parameter. The parameter is the column that is
positioned at the left edge of the screen. By default, column 1 is positioned
at the left edge of the screen. The HS command is provided for terminals that
have a width of less than 80 characters. The HS command can be used to scroll
the screen left and right.

3.3 Inserting Text

The following commands are used to insert characters or lines into the text
buffer.

- 26 -



Chapter 3 Editor Commands

3.3.1 Insert Mode [IM]

The IM command toggles the editor in and out of insert mode. The default
is overwrite mode. In overwrite mode, the character under the cursor is
replaced by the typed character. The new line command NL moves the cursor to
the beginning of the next line. The tab command TB moves the cursor to the
next tab stop. In insert mode, the editor inserts characters. All characters
to the right of the cursor are shifted right as characters are typed. The new
line command NL inserts a blank line and positions the cursor to the beginning
of the blank line. If the NL command is executed in the middle of a line, all
characters to the right of the cursor are moved to the next line. The tab
command TB inserts blanks to position the character under the cursor at the
next tab stop.

3.3.2 Insert Character [IC]

The IC command temporarily causes the editor to insert characters. The IC
command is used while in overwrite mode to insert characters in the middle of
a line. The editor stops inserting characters when a non-printable character

is typed.

3.3.3 Insert Line [IL]

The IL command inserts a blank line into the buffer just prior to the line
containing the cursor.

3.3.4 Undelete Line [UL]

The UL command inserts the last line deleted by the DL command just prior
to the line containing the cursor.

3.3.5 Quote [QU]

The QU command causes the editor to enter the next character typed at the
current cursor position. This command can be used to enter a non-printable
character such as a control character into the buffer. The QU command
prevents the editor from treating the next character typed as a command.

- 27 -



Editor Commands Chapter 3

3.3.6 Quote String [QS or QUOTE]

The QS command requires a parameter. The parameter is a string of
characters which the editor enters into the buffer starting at the position of
the cursor. The QS command can be used to enter a string of non-printable
characters into the buffer.

3.4 Deleting Text

The following commands are used to delete characters or lines from the text
buffer.

3.4.1 Delete Character [DC]

The DC command deletes the character under the cursor.

3.4.2 Rub Out [RB]

The RB command deletes the character to the left of the cursor.

3.4.3 Delete Word [DW]

The DW command deletes the word under the cursor. A word is a sequence of
non-blank characters. If the cursor is over a blank character, then the DW
command deletes all surrounding blanks.

3.4.4 Delete Line [DL]

The DL command deletes the line under the cursor. The undelete line
command UL can be used to restore a deleted line.

3.4.5 Delete to End [DE]

The DE command deletes all the characters from the cursor to the end of the
line,

- 28 -



Chapter 3 , Editor Commands

3.5 String Search and Replace

The following commands allow you to search for a specified character string
within the text buffer. The editor maintains two string buffers. One is the
find string buffer FSTRING and the other is the replace string buffer RSTRING.
A1l of the following commands require parameters that define values for one or
both of these string buffers.

3.5.1 Find String [FS or FIND]

The FS command requires one parameter. The parameter is the string that
will be searched for within the text buffer. The FS command then begins
searching for the string starting at the first character to the right of the
cursor. If the string is found, the cursor is positioned over the first
character in the string. The message STRING NOT FOUND is displayed at the
bottom of the screen if the string is not found.

3.5.2 Replace String [RS or REPLACE]

The RS command requires two parameters. The first parameter is the string
that will be searched for within the text buffer. The second parameter is the
string that will be used as a replacement. The RS command then begins
searching for the string starting at the first character to the right of the
cursor. If the string is found, it is replaced by the string in the replace
string buffer. The message STRING NOT FOUND is displayed at the bottom of the
screen if the string is not found.

3.5.3 Find Next [FN]

The FN command searches for the next occurrence of the string in the find
string buffer. The search begins with the character to the right of the
cursor. If the string is found, the cursor is positioned over the first
character in the string. The message STRING NOT FOUND is displayed at the
bottom of the screen if the string is not found.

- 29 -



Editor Commands Chapter 3

3.5.4 Replace Next [RN]

The RN command searches for the next occurrence of the string in the find
string buffer and replaces it with the string in the replace string buffer.
The search begins with the character to the right of the cursor. If the
string is found, it is replaced. The message STRING NOT FOUND is displayed at
the bottom of the screen if the string is not found.

3.5.5 Replace Global [RG or REPGLOB]

The RG command requires two parameters. The first parameter is the string
that will be searched for within the text buffer. The second parameter is the
string that will be used as a replacement. The RG command works the same as
the RS command except that it replaces all occurrences of the string from the
cursor to the end of buffer, instead of just the first one encountered.

3.6 Block Commands

The following commands operate om a block of text. A block is the text
between and including the marked line and the line containing the cursor. The
mark command is used to mark a line. Some of the commands use a block buffer
to store or retrieve a block of text. All of the commands except for LR and
UR operate on line boundaries. The LR and UR commands operate on character
boundaries.

3.6.1 Mark [MK]

The MK command places an invisible mark on the line under the cursor.
3.6.2 Copy Block [CB]

The CB command copies the block of text from the marked line to the cursor
into the block buffer.

- 30 -



Chapter 3 Editor Commands

3.6.3 Insert Block [IB]

The IB command inserts the block buffer into the text buffer just prior to
the line containing the cursor.

3.6.4 Delete Block [DB]

The DB command deletes the block of text from the marked linme to the line
containing the cursor.

3.6.5 Lower Case [LR]

The LR command converts all characters from the marked character to the
character under the cursor to lower case.

3.6.6 Upper Case [UR]

The UR command converts all characters from the marked character to the
character under the cursor to upper case.

3.6.7 Print [PR]

The PR command prints the text from the marked line to the line containing
the cursor. A line printer must be connected before executing this command.

3.6.8 Fill [FI or FILL]

The FI command requires two parameters. The first parameter specifies the
column to use as the left margin. The second parameter specifies the column
to use as the right margin. The FI command then fills the text from the
marked line to the line containing the cursor so that all characters fit
between the defined margins.

3.6.9 Justify [JF or JUSTIFY]
The JF command is equivalent to the FI command except that the text is also

justified. All the text from the marked line to the line containing the
cursor 1s aligned at the defined margins.

- 31 -



Editor Commands Chapter 3

3.6.10 Extract [XT or EXTRACT]
The XT command requires one parameter. The parameter is the name of a

file. The XT command then writes all the text from the marked line to the
line containing the cursor to the specified file.

3.7 File Commands

The file commands are operations involving disk files.

3.7.1 Help [HP or HELP]

The HP command requires one parameter. The parameter is the name of a help
file (excluding extension). The supplied help files are HELP, KEY, and CMD.
The HELP file contains information about the other two help files. The KEY
file illustrates how the editor commands are mapped to keys. The CMD file
contains a complete list of editor commands in alphabetic format. On some
systems (eg. CP/M), the help files must be on the system drive. The HP
command then displays the help file. While viewing a help file, the RU
command (CTRL R) and the RD command (CTRL C) can be used to scroll back and
forth in the file. The CM command (CTRL Z) terminates the HP command.

3.7.2 Directory [DI or DIR]

The DI command requires one parameter. The parameter is a drive specifier,
usually a number or a letter, depending on the operating system. Simply
pressing the <enter> key selects the default drive. The DI command then
displays a list of the files on the disk in the specified drive.

3.7.3 Show File [SF or SHOWFILE]

The SF command requires one parameter. The parameter is the name of a
file. The SF command then displays the specified file. While viewing the
file, several commands can be used to move around in the file. The RU (CTRL
R) and RD (CTRL C) commands can be used to scroll back and forth in the file.
The UP (CTRL E) and DN (CTRL X) commands will scroll the file back and forth
by one line. You can type a line number followed by the <enter> key to
display a specific line number at the top of the screen. Typing - or + and a
number and then pressing the <enter> key will scroll the specified number of
lines toward the top or bottom of the file. The CM command (CTRL Z)
terminates the SF command.

- 32 -



Chapter 3 Editor Commands

3.7.4 Insert File [IF or INSFILE]

The IF command requires 3 parameters. The first parameter is the name of a
file. The second parameter is a starting line number in the file. The third
parameter is the number of lines to insert. The IF command then inserts the
specified number of lines beginning with the specified starting line number in
the specified file. The lines are inserted into the buffer just prior to the
line containing the cursor. If the file contains fewer lines than specified,
all lines to the end of the file are inserted.

3.7.5 Delete File [DF or DELFILE]

The DF command requires a parameter. The parameter is the name of the file
to delete. The DF command then deletes the file. The DF command is useful in
deleting unneeded files to make more disk space available during an edit
session. The DI command can be used to display the directory of a disk to
locate the file(s) you wish to delete.

3.7.6 Save [SV or SAVE]

The SV command is equivalent to the EX command except that the edit session
is resumed once the text buffer is saved to a file. The SV command can be
used to periodically save the text buffer during an edit session. The message
DONE is displayed at the bottom of the screen when the SV command finishes
execution.

3.7.7 Append [AP or APPEND]

The AP command requires either one or two parameters. The first parameter
is the number of lines. The second parameter is the name of the file. The AP
command then appends the specified number of lines from the file to the end of
the text buffer. The second parameter is not required if editing an existing
file and there are lines remaining in the file that have not been appended to
the buffer. Specifying a file when executing the editor is equivalent to not
specifying a file and then using the AP command to append 100 lines from a
file. If the file contains more than 100 lines, the AP command must be used
to load the remaining lines into the buffer. The AP command does not prompt
for a file name until all lines have been loaded from the file being
appended. Once all the lines have been loaded from the file, the next
execution of the AP command requires a file to be specified.

- 33 -



Editor Commands Chapter 3

3.7.8 Write [WR or WRITE]

The WR command requires one parameter. The parameter is the number of
lines to write to the work file. The WR command then writes the specified
number of lines from the text buffer to the work file. The lines are appended
to the end of the work file. The writing begins with the first line in the
buffer. Once the lines have been written to the work file, they are deleted
from the buffer. The WR command is used to free space in the text buffer so
that more lines can be appended from a file. The AP and WR commands are often
used together when editing files too large to fit in the text buffer. These
commands allow you to page through the file.

3.8 Setting and Clearing Tab Stops

The following commands are used to set or clear tab stops. By default, tab
stops are set at four character intervals.

3.8.1 Delete Tabs [DT]

The DT command clears all tab stops.

3.8.2 Set Tab [ST]

The ST command sets a tab stop at the current cursor position.

3.8.3 Clear Tab [CT]

The CT command clears the tab stop at the current cursor position.

3.8.4 Tab Stops [TS or TABS]

The TS command has two forms. The first form requires a single integer
parameter. This form sets a tab stop at the specified character intervals.
For example, TABS 4 sets a tab stop at 4 character intervals. The second form
allows tab stops to be set at specific columns. This form requires a sequence
of one or more column numbers separated by commas. The column sequence must
be separated from the command name by an = symbol. For example, TABS =
5,20,40,60 sets a tab stop at each specified column.

- 34 -



Chapter 3 Editor Commands

3.9 Miscellaneous

3.9.1 Command Mode [CM]

The CM command places the editor in command mode. Angle brackets <> are
displayed at the bottom left corner of the screen and the editor waits for a
command to executed. Commands are executed by typing a two character command
mnemonic. The CTRL H key can be used to back space if typing errors are
made. When the <enter> key is pressed, the command is executed.

3.9.2 Duplicate [DU]

The DU command copies the characters above and to the right of the cursor
onto the line containing the cursor. The DU command can be used to make
multiple copies of a particular line.

3.9.3 Merge [MG]

The MG command appends the line below the cursor to the end of the line
containing the cursor. The merged line is limited to 80 characters. Excess
characters are not merged. They are left on the line below.

3.9.4 Split [SP]

The SP command splits a line into two lines. When the SP command is
executed, a blank line is inserted below the line containing the cursor and
all characters to the right of the cursor are moved to the blank line.

3.9.5 Center Line [CL]

The CL command centers on the screen the line identified by the cursor.

3.9.6 Auto Indent [AI]

The AI command toggles the auto indent feature on and off. When auto
indent is off, the cursor is positioned at the left edge of the screen when
the <enter> key is pressed. When auto indent is on, the cursor is positioned
under the first non-blank character of the line above when the <enter> key is
pressed. The default is off.

- 35 -



Editor Commands Chapter 3

3.9.7 Line Numbers [LN]

The LN command causes the editor to display a line number for each line in
the text buffer. The LN command toggles line numbers on and off. The default
is off.

3.9.8 Memory [MM]

The MM command displays the amount of unused memory remaining in the text
buffer. When the MM command is executed, the editor displays two numbers at
the bottom of the screen. The first number is the number of characters that
the buffer has room left to store. The second number is the percent of total
buffer space that remains unused.

3.9.9 Refresh [RF]

The RF command causes the editor to redisplay the screen. This command may
be useful to determine whether or not non-printable characters are in the
buffer. If the display behaves improperly, then the buffer contains a
non-printable character that the terminal is interpreting as a command.

3.9.10 Tabify [TF]

The TF command toggles tab compression on and off. When tab compression is
off, the file will not contain any tab characters when the EX command is
executed. When tab compression is on, the file will contain tab characters
for each leading sequence of 8 blanks when the EX command is executed. The
default is on.

3.9.11 Swap Disk [SD]
The SD command must be executed before changing disks on some operating

systems [eg. CP/M).

3.9.12 Roll [RL or ROLL]
The RL command requires one parameter. The parameter 1is the number of

lines that the cursor is moved when the RU or RD command is executed. The
default is 4 lines less than the height of the screen.

- 36 -



Chapter 3 Editor Commands

3.10 The EDIT Command [ED]

The editor has a command that allows a second file to be edited without
terminating the current edit session. When the editor is executed from the
operating system it starts out at level 1. This is the only level ever used
unless the ED command is executed. This command causes the editor to go to
level 2. When level 2 is entered, the editor clears the text buffer and
essentially begins a new edit session. The editor state remains unchanged
except for the fact that a new file is being edited. The level 1 edit session
is preserved with its current state at the time level 2 is entered. When
level 2 is terminated by either the QT or EX commands, level 1 is reentered in
its preserved state. The two levels are independent. [ie. the level 2 edit
does not effect anything in the level 1 edit or vice versa).

The ED command requires five parameters. The first parameter is the name
of the file to edit. If a file is specified, the first 100 lines are loaded
into the text buffer. If the <enter> key is typed for the file prompt, the
level two edit will start with an empty buffer. The next four parameters
define an edit window. They define the top row, bottom row, left column, and
right column of the screen. The editor will use only this window to display
text. The rest of the screen will be left undisturbed. This is a useful
feature if you need to view a few lines of text from the level 1 edit while
editing in level 2. If the specified left and right column parameters define a
window too narrow to display all the text horizontally, the horizontal scroll
command HS may be used to scroll the text in and out of the window. The
window parameter prompts may be answered by typing the {enter> key. When the
<{enter> key is typed, the default value used is the screen boundary.

3.11 Terminating an Edit Session

There are four commands that can be used to terminate an edit session.

3.11.1 Exit [EX or EXIT]

The EX command requires two parameters. The first parameter is the name of
the file. This can be answered by simply pressing the <enter> key if editing
an existing file. The second parameter is a Y or N answer to whether or not
to create a backup file. Simply pressing the <enter> key is equivalent to
typing Y <enter>. The EX command then writes the text buffer to the file and
exits to the operating system. The backup file is created only if the file
already exists. The backup is made by renaming the original file with a BAK
extension. The work file is then named as the original. The backup reflects
the file contents just prior to the last edit sessiom.

_.37_.



Editor Commands Chapter 3

3.11.2 Exit/ [E/ or EXIT/]

The E/ command is equivalent to the EX command except the editor remains
loaded with an empty text buffer. The E/ command should be used when editing
multiple files at one time.

3.11.3 QUIT [QT or QUIT]

The QT command requires one parameter. The parameter is a Y or N answer to
whether or not you really wish to terminate the edit session without saving
the text buffer. If Y is answered, the QT command exits to the operating
system. Otherwise the edit session is resumed.

3.11.4 QUIT/ [Q/ or QUIT/]
The Q/ command is equivalent to the QT command except the editor remains

loaded with an empty text buffer. The Q/ command should be used if you simply
wish to delete the text buffer.

- 38 -



Chapter 4

Changing Editor Characteristics

The editor has several commands that change specific characteristics of the
editor. This chapter explains the two commands that allow you to customize
the editor. One command allows you to change the way the keyboard is mapped
to the editor commands. The other allows you to define your own editor
commands. A single command may be constructed from the set of built in
commands. This is called a macro command because it combines more than one of
the built in commands to form a single more powerful command.

4.1 Translating Keys to Commands

The editor is supplied with selected commands internally mapped to the
keyboard. It is possible to change this mapping partially or completely to
suit personal preference. The TRANS command will allow you to map any
keyboard generated character sequence to any editor command. The character
sequence consists of one or more ASCII characters, printable or
non-printable. It is best to start the sequence with a non-printable
character (eg. the ESC character or a control character). 1f a printable
character starts the sequence, you will no longer be able to enter that
character as text. The editor treats all character sequences defined by the
TRANS command as a single entity. As each character is received from the
keyboard, it is checked to see if it begins a sequence mapped to an editor
command. If not, then the character is entered as text if it is printable or
discarded if it is non-printable. If the character does begin a defined
sequence, the appropriate command is executed for the case of a single
character sequence. For multiple character sequences, subsequent characters
are used to determine the appropriate command. (ie. they are not entered as
text) Only after the sequence traces to a specific command or an invalid
sequence does the editor revert back to entering printable characters as
text.

There are three special symbols which may be used in quoted strings. (#,
~, and =). The editor gives special meaning to these symbols. If the symbol
itself is to be a character in the string, it must appear twice. For example,

"##' would be the single character #.

Any ASCII character may be represented in a quoted string. The
non-printable characters may be represented by a three character sequence
beginning with the # symbol. The two characters following the symbol must be
a valid hexadecimal value. The ASCII chart in the appendix shows the

- 30 -



Changing Editor Characteristics Chapter 4

hexadecimal value for each character in the ASCII character set.

The ” symbol is used to represent the control key, CTRL. For example, CTRL
Q may be represented in a string as '"Q'. This is equivalent to the string
"#11' since CTRL Q has the ASCII value of hexadecimal 11. As you can see, '"~Q'
is a little more readable than '#11'. The character sequence CTRL Q, f, Z is
represented as '"QfZ'. The sequence CTRL W, CTRL X is represented as '“W*X'.
The escape character ESC may be represented as '~[',

The = symbol is used to signify that a two character editor command

mnemonic follows. For example, the string '=Up' represents the cursor up
command (UP). The string '=FS' represents the find string command (FS).

4.1.1 Translate [TR or TRANS]

The TR command requires two string parameters. The first parameter is a
sequence of one or more keys. The second parameter is a single character or
command mnemonic. The TR command stores the key sequence and its associated
character or command in a table. The TR command can be used to cause a key to
generate a particular character. For example, TR '?' '\' causes the editor to
translate the ? key to the \ character. However, the TR command is usually
used to translate a non-printable key to an editor command. For example, TR
""W' '=FW' translates CTRL W to the FW command. The command TR QW' '=BW'
translates CTRL @, GTRL W to the BW command.

While in command mode, rather than type ~ followed by a character, the
actual control character may be typed. The editor will echo the two character
representation. For example, if CTRL R is typed, the editor will echo "R to
the command line. When the ESC key is typed, the editor echos ~[ to the
command line,

4.2 Defining Macro Commands

It is possible to translate a key sequence to more than one character or
editor command. The DEFINE command allows a sequence of one or more keys to
be translated to a sequence of one or more characters and/or commands.

4.2.1 Define Macroc [DM or DEFINE]

The DM command requires two string parameters. The first parameter is a
sequence of one or more keys. The second parameter is a sequence of one or
more characters and/or editor commands. The DM command stores the key
sequence and its associated character/command sequence in a table. When the
defined key sequence is typed, the editor uses the associated
character/command string as input. The editor treats the string as if you
were typing it from the keyboard. Characters are entered into the text buffer
and commands are executed. Essentially anything that can be done manually

- 40 -



Chapter 4 Changing Editor Characteristics

from the keyboard can be defined in this string and executed automatically.

A simple illustration of the use of the define command is to map a key to a
word which is often typed. The following example maps the word Program to the
key sequence ESC P (ie. the escape key followed by upper case P). Then typing
ESC P is equivalent to typing the word Program.

DEFINE '"~[P' 'Program’

Commands may be specified in several ways. One way is to specify the
command mnemonic preceded by the = symbol. If the command requires
parameters, the parameters should immediately follow the mnemonic. Each
parameter must be followed by the NL command as a parameter terminator. By
default, the NL command is mapped to the <enter> key which is equivalent to
CTRL M. Therefore, either "M or =NL may be used as a parameter terminator.
The following macro will move the cursor forward by sentence. The example
maps the macro to ESC S. When executed, the find string command positions the
cursor over the next period in the text. Then the RT command is used to
handle cases where the period is the last character on a line. The FW command
then causes the cursor to be positioned to the beginning of the next word.

DEFINE '~[S' '=FS.=NL=RT=FW'

First the FS command is executed which causes the editor to prompt for the
{FIND>STRING: parameter. The editor then uses the sequence of characters up
to the terminator as the find string parameter, in this case a period. Once
the parameter is input, the FS command is executed. When finished, the next
input received is the cursor right and forward word commands. After the FW
command is executed, control returns to the keyboard.

The following example illustrates another way of defining the macro to move
forward by sentence. The keys that the commands are mapped to can be used in
place of the command mnemonics.

DEFINE *~[s' '~Q"J."M"D"F'

The difference between the two macros is that the first definition will not
change if a key is remapped. The second definition will. For example, if
TR '“D' '=DC' is executed, the second macro definition then deletes the period
because "D is now delete character instead of cursor right.

Any defined key sequence can be used in defining a macro. This means that
one macro may reference another defined macro. Since strings may not cross
line boundaries, this provides a way of building macros longer than one line.
The following example illustrates a macro definition which refers to another
defined macro.

Suppose you wish to define a macro to capitalize the first character of the
current word under the cursor. First define a macro which positions the
cursor to the beginning of the current word. The BW command will do this.

- 4] -



Changing Editor Characteristics Chapter 4

However, if the cursor is already on the first character of a word, the back
word command will position the cursor to the beginning of the previous word.
To prevent this from occurring, position the cursor right one character before
executing the BW command.

DEFINE '~[B' '=RT=BW'

Now you can define a macro which capitalizes the character under the
cursor. The UR block command can be used to do this. First the MK command is
used to mark the current cursor position. Then the UR command capitalizes the
character under the cursor.

DEFINE '~[C' '=MK=UR'

A macro can now be defined which uses both of the previously defined
macros,

DEFINE '“W' '~[B~][C’

CTRL W can then be used to capitalize the current word under the cursor.
This particular macro is short enough to have been defined as a single macro.
However, it does illustrate how one macro may use another defined macro.

The DM command can be used to create lots of other useful editor commands.
For example, the DM command can be used to define commands to page through a
large file. The WR and AP commands must be used to page through files that
are too large to fit in the text buffer. After defining the following macro,
100 lines at a time are paged from the file into the text buffer when CTRL Q,
CTRL P is typed.

DEFINE '~Q"P' '=WR100=NL=AP100=NL"

4.2.2 Undefine Macro [UM or UNDEFINE]

The maximum number of macros that may be defined at any one time is 64. If
you wish to change the macro defined to a particular key sequence, you may
simply use the DM command to define a new macro to that particular sequence.
However, the memory required to store the previously defined macro will not be
recovered. To recover the memory used by the old macro, the undefine macro
command UM should be used.

The UM command requires one parameter. The parameter is a string
corresponding to a key sequence. The UM command then deletes the defined key
sequence and associated command string from the table.

..42_



Chapter 5

Editor Setup Files

The editor must use a setup file at a minimum to determine the terminal
characteristics. In addition, the setup file may be used to customize the
editor by setting specific editor states, mapping commands to keys, and
defining new commands. Several setup files may be created to allow the editor
to be configured differently each time it is executed. Then simply specify
the appropriate setup file when the editor is executed. You might use one
setup file for programming and another one for word processing. If you use
more than one programming language, you might have a separate setup file for
each language.

There are some normal editor commands which are allowed in setup files and
some special commands which can be used only in setup files. Among the
special commands are four terminal defining commands (HEIGHT, WIDTH, TERMINAL,
and CURSOR). These are the commands which the SETEDIT utitity outputs to a
setup file to define terminal characteristics. When creating a setup file,
you may exclude the terminal characteristics. After creating a text format
setup file using the editor, the SETEDIT utility may be used to read it, merge
it with the terminal information, and then write the combined information to a
binary and/or text format file. The terminal information may be merged by
selecting the proper terminal from the menu or by reading a previously created
setup file containing the terminal information. A binary setup file
containing terminal information should be present on your master disk if your
computer has a known terminal type. This setup file is named SETUP with an
EDT extension. If not present, the SETEDIT utility must be used to create the
setup file. Remember, the editor requires binary setup files. However, the
text format setup file is useful if you wish to make modificatioms.

The commands in setup files are limited to one command per line. The
semicolon (;) may be used as a comment specifier. If a semicolon is
encountered in a setup file, the remaining text on that line is treated as a
comment. This of course does not apply to semicolons which appear inside
quoted strings. The commands may be placed in any order within the setup
file. The only requirement is that a key sequence must be defined before it
is referenced by the START or DEFINE commands.

- 43 -



Editor Setup Files Chapter 5

5.1 Normal Commands

This section lists the normal editor commands which may be used in a setup
file. 1In setup files, these commands must be specified using the command
name. The mnemonic is not allowed. Otherwise, the form is the same as
described in chapters 3 and 4.

5.1.1 TARS

The TABS command may be used to change the default tab setting. The
default is TABS 4. Both forms of the TABS command may be used. See the TS
command in chapter 3.

5.1.2 ROLL

The ROLL command may be used to change the default setting for the number
of lines scrolled by the RU and RD commands. The default roll size is four
less than the screen height. See the RL command in chapter 3.

5.1.3 AUTOINDENT

The AUTOINDENT command can be used to turn on the auto indent feature from
a setup file. The default is off. See the AI command in chapter 3.

5.1.4 TRANS

The TRANS command can be used to change the default mapping of commands to
keys. A complete remapping may be performed or the default mapping may be
slightly modified. See the TR command in chapter 4.

5.1.5 DEFINE

The DEFINE command may be used to define macro commands formed from the
built in commands. If a macro command references a key sequence defined by
the TRANS command or by another DEFINE command, the referenced sequence must
be defined on a previous line. There is a limit of 64 macro definitions. See
the DM command in chapter 4.

- 4l -



Chapter 5 Editor Setup Files

5.2 Special Commands

The special commands are commands which may only be used in a setup file.
The last four commands in this section define terminal characteristics. These
commands are automatically created by the SETEDIT utility and therefore may be
included in the setup file through the use of this utility.

5.2.1 INIT

The INIT command may be used to send a string of characters to the terminal
when the setup file is loaded. The command requires one parameter which is a
quoted string. The string may contain either printable or non-printable
characters. Printable characters may be sent to identify the setup file being
used for the current edit session. Non-printable characters that the terminal
interprets as commands may also be used to set some desired terminal
characteristic.

Example: INIT 'Pascal Setup File'

5.2.2 EXIT

The EXIT command is identical to the INIT command except the string is not
sent to the terminal until the editor is exited. There can only be one EXIT
command in a setup file.

Example: EXIT 'Edit Finished'

5.2.3 START

The START command specifies a string of commands that are executed
immediately after the file to be edited has been loaded. This command can be
used to execute editor commands that are not allowed in the setup file. The
following example causes the editor to start out in insert mode with tab
compression turned off. There can only be one START command in a setup file.

Example: START '=IM=TF'

- 45 -~



Editor Setup Files Chapter 5

5.2.4 CMD

The CMD command provides a way of giving names to the built in editor
commands. The commands which do not require parameters have only a two
character mnemonic. The CMD command may be used to define a longer name for
the command. In some cases, a longer name may be easier to remember than the
two character mnemonic. It requires two parameters. The first is the name.
The second is a string containing an editor mnemonic. The following example
assigns the name MARK to the mnemonic MK. This will allow the mark command to
be executed by either the full name or the two character mnemonic.

Example: CMD MARK '=MK'

The following four commands describe the terminal characteristics. The
SETEDIT utility may be used to create these commands in a setup file.

5.2.5 HEIGHT

The HEIGHT command requires a single integer parameter that defines the
number of lines on the screen.

Example: HEIGHT 24

5.2.6 WIDTH

The WIDTH command requires a single integer parameter that defines the
character width of the screen.

Example: WIDTH 80

5.2.7 TERMINAL

The TERMINAL command defines the features of the terminal. It requires two
parameters. The first is a name that identifies a terminal function. The
second parameter is a string containing the character sequence required by the
terminal to perform that specific function. The editor makes use of most of
the smart features included in many of the latest terminals. The following
features are supported.

- 46 -



Chapter 5 Editor Setup Files

CLEAR - clear screen
CLREOS - clear to end of screen
CLREOL =~ clear to end of line
INSLINE - insert line
DELLINE - delete line
DELCHAR - delete character
INSMODE -~ enter insert mode
NOINS - exit insert mode
RSCROLL - scroll the screen 1 line down
(reverse linefeed with cursor at top of screen)

SCROLL =~ scroll the screen 1 line up
(1inefeed with cursor at bottom of screen)
INSONE -~ insert one character

Other parameters of the terminal command specify how cursor addressing is
performed.

specifies the character sequence which precedes
the row and column. This parameter is used if
the terminal does not require character sequences
between and following the row and column address.

CURSOR

specifies the character sequence which precedes
the row and column. This parameter is used if
the terminal requires character sequences between
and following the row and column address.

CURSOR1

specifies the character sequence which must
appear between the row and column.

CURSOR2

specifies the character sequence which follows
the row/column address.

CURSOR3

specifies the offset for addressing the first
row or colummn on the screen.

COFFSET

Example: TERMINAL CLEAR '~[Y'

5.2.8 CURSOR

The CURSOR command requires one parameter that describes the algorithm used
to address the cursor. The following is a list of the possible cursor
addressing methods. The SETEDIT utility will generate one of these adressing

methods.

ROWCOL, ANSII, COLROW, BINARY, ASCII, SPECIAL

Example: CURSOR ROWCOL

- 47 -



Editor Setup Files Chapter 5

5.3 Sample Setup Files

;*******************************************k*******k********
;* *
3k TRS80 MODEL 11/12/16 SETUP FILE %
3% (for Lifeboat CP/M) *

;************************************************************

—————————————— terminal characteristics —=—===————————m—em——e
(Created by the SETEDIT utility)

TERMINAL CLEAR il N ;clear screen

TERMINAL CLREOS A ;clear to end of screen
TERMINAL CLREOL el ;clear to end of line
TERMINAL INSLINE '“[E' ;insert line

iERMINAL DELLINE ‘'~[R' ;delete line

TERMINAL DELCHAR '~[W' ;delete character

TERMINAL CURSOR Pef=t ;address cursor

TERMINAL INSONE Q' ;insert one character
TERMINAL SCROLL B ;scroll 1 line up

CURSOR  ROWCOL ;row/column cursor addressing
HEIGHT 24 ;number of lines/screen
WIDTH 80 ;number of characters/line

—————————————— end of terminal definition ——=-==—=—-m—eeeme——
(User Created Section)

INIT 'TRS80 MODEL 12 CONFIGURATION';send message to terminal
EXIT 'EDIT SESSION FINISHED' ;send message to terminal

sKEY TRANSLATIONS

& e e et e e e i i e e e et

TRANS *'~\' '=LF' ;left arrow mapped to cursor left
TRANS '~]' '=RT' ;right arrow mapped to cursor right
TRANS '~~' '=QP' ;up arrow mapped to cursor up

TRANS '~ ' '=DN' ;down arrow mapped to cursor down

B s i S S ot . e, S e e i i S e S bl i i o . T

2

START '=TF=IM' ;tab compression off, insert mode on
TABS 8 ;set tabs every 8 spaces

AUTOINDENT ;turn on auto-indent

ROLL 23 ;set scrolling to screen height -~ 1

3
;DEFINE COMMAND NAMES

® s e e e 2. v . . o S, T P . e S o . i i

s
CMD MARK '=MK! ;mark
CMD TOP '=TpP' ;top of buffer

- 48 -



Chapter 5 Editor Setup Files

CMD BOTTOM '=BB' ;bottom of buffer
CMD INDENT '=AI' ;auto indent

:DEFINE MACROS

DEFINE '~[@' '=IL=IL=IL=IL=IL' ;ESC @-insert 5 blank lines
DEFINE '~[N' '"~[@[~@' ;ESC N-insert 10 blank lines
DEFINE '~[1' 'PROGRAM' ;sESC 1-type PROGRAM

DEFINE '~[2' 'CONST' ;ESC 2-type CONST

DEFINE '~[3' 'TYPE' sESC 3-type TYPE

DEFINE '~[4' 'VAR' sESC 4—type VAR

DEFINE '~[5' 'PROCEDURE ' ;ESC 5~type PROCEDURE

DEFINE '~[6' 'FUNCTION ' ;ESC 6-type FUNCTION

DEFINE '~[7' 'BEGIN ' sESC 7-type BEGIN

DEFINE '~[8' 'END' ;ESC 8-type END

DEFINE '~[D' '~[2"M~[3"M~[4' ;ESC D-type declarations
DEFINE '~[B' '~[7"M"[8' ;ESC B-type body

DEFINE '~[F' '~[6~M"[D"M"[B;" ;ESC F-type function
DEFINE '~[P' '~[5"M"[D"M"[B;' ;ESC P-type procedure

; ESC A puts a program shell on the screen

there must be blank lines in the buffer

if the editor is not in insert mode

.
3

.
3

DEFINE '~[A' '“M=HM~[1"M~[D"M"M"~[F"M"M~[P"M"M"~[B.=HM=FW '

;Make the ESC <character> work with lower case

3

DEFINE '~[n' '~[N'
DEFINE '~[d' '~[D'
DEFINE '~[b' '~[B'
DEFINE '~[f' '~[F'
DEFINE '~[p' '~[P'
DEFINE '~[a' '~[A'
; end of setup file

- 49 -



Editor Setup Files

3 R R o g g g R b T N R R R r EE T

TRS-80 MODEL 4 SAMPLE SETUP FILE
(for TRSDOS 6)
Among other things, this setup file maps the arrow
keys to cursor movement commands.
This setup file maps some commands to the clear
and break keys. In the explanations below, the
clear key is represented as <CLR> and the break
key as <BRK>. When executing commands mapped with
{CLR>, the clear key should be held down. When
executing commands mapped with <BRK>, the break
key should be pressed and released.
The keys which are mapped to commands are commented
in the form: s key —-> command
Note:
The editor's internal mapping of keys to commands
remains valid for all keys which are not explicitly

remapped by this setup file. *
R R R

¥ o ok oh % ko % o % % Ok %

%

k3% ok ok ok ok ok % ok ok ok ok 3k ok ¥ % ¥

* %

we

§ e —————— e e terminal definition ——=—=———————m—mm .
R (This section was created by SETEDIT)

3

TERMINAL CLEAR AN ;clear screen

TERMINAL CLREOS et ;clear to end of screen
TERMINAL CLREOL tant ;clear to end of line
TERMINAL SCROLL g ;scroll 1 line up

CURSOR  SPECIAL ;special cursor addressing
HEIGHT 24 ;number of lines/screen
WIDTH 80 ;number of characters/line
o ———— end of terminal definition =~—===w=mm—————————
5

; (Customization Section)

; The following two commands send strings of characters

; to the terminal. ©“N in the INIT string insures that

; the Model 4 cursor is turned on.

INIT '~NReading Setup File' ;send message at start

EXIT 'Edit Session Finished' ;send message at end

;KEY TRANSLATIONS

; The following key tranlations redefine how editor

; commands are mapped to the Model 4 keyboard.

; Appendix B of the Model 4 Disk System Owners's

H Manual has a keyboard diagram which shows the

; characters generated by each key.

5 The following key translations map the arrow keys

5 to cursor movement commands. The left arrow key

; generates "H which is internally mapped to =LF.
TRANS '~I' '=RT' ;right arrow --> cursor right

- 50 -

Chapter 5



Chapter 5 Editor Setup Files

TRANS '~J' '=DN' ;down arrow --> cursor down
TRANS '"K' '=UpP’ ;up arrow --> cursor up
TRANS '#8A' '=RD' ;<CLR> down arrow =--> roll down
TRANS '#8B' '=RU'’ ; <CLR> up arrow -=> roll up
TRANS '#88' '=BT' ;<CLR> left arrow --> back tab

TRANS '#89' '=TB' ;<CLR> right arrow --> tab

The following key translations map various commands
mnemonically using the clear key as a control key.
Use <CLR> N for insert line.

.
>
.
b

.
3

TRANS '#C6' '=FN' ;<CLR> F ~~> find next
TRANS '#D2' '=RN' ;<CLR> R --> replace next
TRANS '#C3' '=DC' ;<CLR> C --> delete character
TRANS '#D7' '=DW' ;<CLR> W ~-> delete word
TRANS '#CC' '=DL' ;<CLR> L --> delete line
TRANS '#D5' '=UL' ;<CLR> U -—-> undelete line
TRANS '#C4' '=DpU’ ;<CLR> D -=> duplicate line

I --> insert character

TRANS '#C9' '=IC' ; SCLR>

The following key translations map commands to the
3 function keys Fl, F2, and F3. The shifted function
keys are represented as <SFn>

.
3
.
3>

.
3

TRANS '#81' '=CM' ;<F1> --> command mode
TRANS '#82' '=BW' ; <F2> ~--> backward by word
TRANS '#83' '=FW' ; <F3> --> forward by word
TRANS '#91' '=IM' ;<SF1> --> insert mode
TRANS '#92' '=8P°* ; <SF2> --> split line

TRANS '#93' '=MG' ; <SF3> --> merge line

3
The following key translations map commands to the

keys using the break key <BRK> as a prefix.

.
2

.
b

TRANS '#80#0A' '=BB' ;<BRK> down arrow =--> bottom of buffer
TRANS '#80#0B' '=TP' ;<BRK> up arrow --> top of buffer

TRANS '#80#08' '=BL' ;<BRK> left arrow --> beginning of line
TRANS '#80#09' '=EL' ;<BRK> right arrow --> end of line

TRANS '#80L' '=pE' ;<BRK> L ~-> delete to end of line

TRANS '#801' '=DE' ;<BRK> 1 --> delete to end of line

yEDITOR STATE CONFIGURATION

The following commands set default states for the
; editor.

bl

START '=TF' ;tab compression off
TABS 3 ;set tabs every 3 spaces
AUTOINDENT ;turn on auto-indent

ROLL 23 ;set scrolling to screen height - 1

b
;DEFINE LONG NAMES FOR THESE COMMANDS

- 5] -



Editor Setup Files Chapter 5

; The following commands define long names which may
; be used while in command mode to execute these commands.

CMD MARK  "=MK' ;MARK  is equivalent to MK
CMD INDENT '=ATL’ ; INDENT is equivalent to Al

s
;DEFINE MACROS

The following commands define macro's which map
Pascal keywords to the numeric keys using clear as a
; control key.

DEFINE '#Bl1' 'PROGRAM ' ;<CLR> 1 --> PROGRAM
DEFINE '#B2' 'CONST ' ;<CLR> 2 —--> CONST
DEFINE '#B3' 'TYPE ' ;<CLR> 3 ~—-> TYPE
DEFINE '#B4' 'VAR ' ;<CLR> & --> VAR
DEFINE '#B5' 'PROCEDURE ' ;<CLR> 5 --> PROCEDURE
DEFINE '#B6' 'FUNCTION ' ;<CLR> 6 --> FUNCTION
DEFINE '#B7' 'BEGIN ' ;<CLR> 7 ~--> BEGIN
DEFINE '#B8' 'END' ;<CLR> 8 -~> END

; The following commands define macros's which use

the macro's defined above to create Pascal program shells.
; The next line command (=NL)} is internally mapped to "M
which is generated by the <enter> key. "M is used in

; place of =NL in the definitions below.

DEFINE '#80D' '#B2"M#B3"M#B4' ;<BRK> D --> declaratious
DEFINE '#80B' '#B7 M#B8' :<BRK> B --> body

DEFINE '#80F' '#B6"M#80#44 "M#80#42;' ;<BRK> F ~-> function
DEFINE '#80P' '#B5 "M#80#44 "M#80#42;' ;<BRK> P --> procedure

The following macro definition defines
<BRK> S to put a complete program shell on the screen

DEFINE '#80S' '=IM=BL"M"K#B1 "M#80D"M"M#80P "M "M#80F "M "M#80B.=HM=FW =IM'

3

; The following definitions make the above macros work
; with lower case.

DEFINE '#804' '#80D' ;<BRK> d ~-> <BRK> D
DEFINE '#80b' '#80B' ;<BRK> b ~-> <BRK> B
DEFINE '#80f' '#80F' ;<BRK> f -—> <BRK> F
DEFINE '#80p' '#80P' ;<BRK> p -~> <BRK> P

s -—> <BRK> S

DEFINE '#80s' '#80sS' ; <BRK>
5 The following macros define keys which terminate an edit
; session. <BRK> E is defined to exit and save the file
being edited but not save a backup file. <BRK> Q is
defined to quit the edit without saving the file.

.
3

.
2

DEFINE '#80E' '=EX=NLN=NL' ;<BRK> E --> exit
DEFINE '#80Q' '=QTY=NL' ;<BRK> Q --> quit

- 52 -



Chapter 5 Editor Setup Files

DEFINE '#80e’ '#80E'
DEFINE '#80q’' '#80Q'
; end of setup file

;<BRK> e —> <BRK> E
;<BRK> q --> <BRK> Q






Appendix A

Custom Setup

A.l Sample Terminal Setup

This is a sample execution of the SETEDIT utility using the CUSTOM terminal
selection. The terminal used in the sample is the TELEVIDEO 925/950. Note
that for steps 26 and 30, @ was used. This is the null character. Null
characters are ignored by most terminals. They may therefore be used as fill
characters in order to control timing. If a particular terminal function
responds too slowly, null characters may be used to allow the terminal time to
complete the function. ’

1) Type SETEDIT

2) Please make a selection: T <enter>

3) Please select a terminal or 0 to exit: 31 <enter>

4) Do you want to continue? Y {enter’

5) B=binary, A=ascii: B <enter>

6) Which is first, row or column (R,C): R {enter>

7) enter a decimal number (space=32): 32 {enter>

8) What characters come before the row number: ~{= <enter>
9) What characters come between the row and column: <enter>
10) What characters come after the column number: <enter>
11) Does your terminal have clear screen ? ¥ <{enter>
12) Sequence to perform it: ~[+ <{enter>

13) Does your terminal have clear to end screen ? Y <{enter>
14) Sequence to perform it: ~[Y {enter>

15) Does your terminal have clear to end of line? Y <enter>
16) Sequence to perform it: ~[T {enter>

17) Does your terminal have insert line ? Y <enter>
18) Sequence to perform it: ~[E <enter>
19) Does your terminal have delete line ? Y <enter>
20) Sequence to perform it: ~[R <enter>
21) Does your terminal have delete character ? ¥ <enter>
22) Sequence to perform it: ~[W <enter>
23) Does your terminal have enter insert mode N <enter>
24) Does your terminal have exit insert mode ? N <enter>
25) Does your terminal have scroll 1 line down ? Y <enter>

26) Sequence to perform it: ~[jT@"@"@"€ {enter>

97) Does your terminal have imsert 1 character ? Y <enter>
28) Sequence to perform it: ~{qQ <enter>

29) Does your terminal have scroll 1 line up ? Y <enter>
30) Sequence to perform it: "[J"@ {enter>

_55...



31) Please make a selection: W <enter)
32) Enter name for binary setup file: SETUP.EDT
33) Please make a selection: E <enter)

A.2 Special Cursor Addressing

Many computer systems that use the CP/M operating system can be used with a
variety of terminal types. This section shows how to create a screen driver
for a terminal that does not use a character sequence to address the cursor.

The mimimum requirement for executing the Blaise II editor is that the
display device must have an addressable cursor. The custom cursor addressing
option provided in the SETEDIT utility will allow the use of almost any
terminal that allows the cursor to be directly addressed. For custom cursor
addressing to work, the terminal must allow direct cursor addressing in
response to a set of characters sent to it. This is normally some form of
escape sequence with the cursor address embedded.

If your terminal (or memory mapped video) does not allow cursor addressing
via a sequence of characters, then you must use the special cursor addressing
option. To use special cursor addressing, execute the SETEDIT utility and
select option 32 (special) for the terminal type. This will cause the editor
to use a customer supplied assembly language routine to address the cursor.
At this time, you can specify any escape sequences that your terminal
supports.

You must write an assembly language routine to perform cursor addressing.
When the cursor is to be moved, the editor will transfer control to address
1C21H with the row number contained in register H and the column number in
register L. Your assembly language routine should use this information to
perform whatever action is required to move the cursor and then return to the
editor with a normal RET instruction. All of the registers are available and
your routine may occupy up to 64 bytes of memory. The code should be
assembled with an origin of 1C21H (hexadecimal) and a .HEX file generated.
This module will be merged with the Blaise II editor in the next steps.

To merge the assembly language driver with the Blaise II editor, perform
the following steps.

1. Load the editor with DDT by: DDT EDIT.COM

2. Use the I command in DDT to specify the .HEX file
containing your driver

3. Use the R command to read the driver into memory

4. Type control~C to exit to CP/M

5. Save the new image with: SAVE 150 EDIT.COM

The following example shows a sample assembly language driver and the
method for merging it with the editor. It assumes that a 16 line by 64
character memory mapped video board is installed in the system at address
FCOOH. The cursor address is stored as a direct memory address at location 40H

- 56 -



in memory, and that the most significant bit of the byte under the cursor is
set to make the cursor byte inverse video.

; sample cursor addressing for 16x64 memory mapped video
MEMORY EQU  OFCOOH

CURSOR EQU  040H

CSRBIT EQU 080H

3

ORG  01C21H

; on entry, the row is in H and the column is in L

PUSH H

LHLD CURSOR ; deselect old cursor
MOV A,M

XRI CSRBIT

MOV  M,A

POP D ; get new cursor address
MOV  A,D

RAR ; shift row into pesition
RAR

MOV D,A ; save shifted row

ANI 3 ; mask upper two bits
MOV H,A

MOV A,D ; get low 2 bits of row
ANI 0COH ; mask

ADD E ; add column

MOV  L,A

LXI D ,MEMORY ; add board offset

DAD D

SHLD CURSOR ; save new cursor

MOV  AM ; set cursor byte to inverse
XRI CSRBIT

MOV  M,A

RET ; exit back to editor
END

If the above subroutine is contained in the file A:CURSOR.ASM, then it can
be merged into the editor as shown below. The text following the semicoloms
(;) are comments and would not be entered.

- 57 -



ADASM CURSOR

CP/M ASSEMBLER - VER 2.0
1C42

000H USE FACTOR

END OF ASSEMBLY

A>DDT EDIT.COM
DDT VERS 2.2

NEXT PC
8700 0100

- ICURSOR.HEX
-R

NEXT PC
9700 0100
~-~C

A>SAVE 150 EDIT.COM
A>

; assemble the source

load the editor with DDT

: setup to load
; read the hex file

type control C to exit

; save the new image

-~ 58 -



Decimal Octal

.

.

WOyt PN O
s e s a . P

000
001
002
003
004
005
006
007
010
011
012
013
014
015
01lé
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047

Hex

00
01
02
03
04
05
06
07
08
09
0A
0B
0c
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27

Appendix B

Standard 7-bit ASCII Character Set

Graphic

~@
“A

Y 2 > x> > 0y > oy ¥ > >
o3

b

IR - I I R I I S T I S I S 2 T S
T e NHRXNE<CdHOXNONWOZRRERN RGUHIQEEHIO

- 2 8 Uy Hh

Name

NUL (used for padding) <null>

SOH (start of header)

STX (start of text)

ETX (end of text)

EOT (end of transmission)
ENQ (enquiry)

ACK (acknowledge)

BEL (bell or alarm)

BS (backspace) <bs>

HT (horizontal tab) <tab>
LF (line feed) <1£>

VT (vertical tab)

FF (form feed, new page) <ff>

CR (carriage return) <cr>
SO (shift out)

SI (shift in)

DLE (data link escape)

DC1 (device control 1, XON)
DC2 (device control 2)

DC3 (device control 3, XOFF)
DC4 (device control 4)

NAK (negative acknowledge)
SYN (synchronous idle)

ETB (end transmission block)
CAN (cancel)

EM (end of medium)
SUB (substitute)

ESCAPE (alter mode, SEL) <esc>

FS (file separator)
GS (group separator)
RS (record separator)

Us

(unit separator)

space or blank <sp>
exclamation mark

double quote

number sign (hash mark)
dollar sign

percent sign

ampersand sign

single quote (apostrophe)

_59_



40.
41.
42,
43,
44,
45.
46,
47,
48,
49.
50.
51,
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63,
64 .
65.
66.
67.
68.
69.
70.
71.
72.
73.
74,
75.
76.
77.
78,
79.
80.
81.
82.
83.
84,
85.
86.
87.
88.
89,
90.
91.
92.
93.
94,

450
051
052
053
054
055
056
457
060
061
062
063
064
065
066
067
G670
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
i24
125
126
127
130
131
132
133
134
135
136

28
29
24
2B
2C
2D
2E
2F
30
31

-
£

33
34
35
36
37
38
39
3A
3B
3¢
3p
3E
3F
40
41
42
43
44
45
46
47
48
49
4a
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5¢C
5D
5E

H

© MO QO DY U P 0 R ke D e

PN M E GO H O RO YO E RN RGO MM D O OB E e N ] A e

left parenthesis

right parenthesis
asterisk (star)
plus sign
comma
minus sign (dash)

period (decimal point)
(right) slash
numeral zero

numeral one
numeral two
numeral three
numeral four
numeral five
numeral six
numeral seven
numeral eight
numeral nine

colon

semi~-colon

less~than sign
equal sign

greater—than sign
question mark
atsign

upper—~case letter ABLE
upper—case letter BAKER
upper—case letter CHARLIE
upper—case letter DELTA
upper-case letter ECHO
upper—case letter FOXTROT
upper-case letter GOLF
upper—case letter HOTEL
upper—case letter INDIA
upper—case letter JERICHO
upper—case letter KAPPA
upper-case letter LIMA
upper—case letter MIKE
upper—case letter NOVEMBER
upper—case letter OSCAR
upper—case letter PAPPA
upper-case letter QUEBEC
upper—-case letter ROMEO
upper—case letter SIERRA
upper—case letter TANGO
upper—case letter UNICORN
upper—case letter VICTOR
upper-case letter WHISKY
upper—case letter XRAY
upper—case letter YANKEE
upper—-case letter ZEBRA
left square bracket

left slash (backslash)
right square bracket
uparrow (carat)

- 60 -



95.

96.

97.

98.

99.
100.
101.
102.
103.
104,
105.
106.
107.
108.
109.
110.
111.
112.
113.
114,
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.

137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E

4

I/ AN XN E < R0U 0B B R H T MO Lo oD

underscore

(single) back quote

lower-case
lower—case
lower-case
lower-case
lower-case
lower—-case
lower-case
lower-case
lower—-case
lower~case
lower—-case
lower—~case
lower—-case
lower—-case
lower—case
lower~case
lower-case
lower—-case
lower—case
lower-case
lower-case
lower—-case
lower—-case
lower—case
lower-case
lower-case
left curly

letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
brace

vertical bar
right curly brace

tilde

7F <rubout> DEL <del>

- 61

able
baker
charlie
delta
echo
foxtrot
golf
hotel
india
jericho
kappa
lima
mike
november
oscar
pappa
quebec
romeo
sierra
tango
unicorn
victor
whisky
xray
yankee
zebra






APPEND 5

Append [AP or APPEND] 33
Auto Indent [AI] 35
AUTOINDENT 44

Back Tab [TB] 24

Backward Word [BW] 24
Beginning of Line [BL] 24
Bottom of Buffer [BB] 25
buffer 5

Center Line [CL] 35

Clear Tab [CT] 34

CMD 46

command mode 7

Command Mode [CM] 35
compose mode 6

Copy Block [CB] 30

CURSOR 47

DEFINE 44

Define Macro [DM or DEFINE] 40
Delete Block [DB] 31
Delete Character [DC] 28
Delete File [DF or DELFILE] 33
Delete Line [DL] 28

Delete Tabs [DT] 34

Delete to End [DE] 28
Delete Word [DW] 28
Directory [DI or DIR] 32
Down [DN] 23

Duplicate [DU] 35

Edit [ED] 37

End of Line [EL] 24

EXIT 45

Exit [EX or EXIT] 37

EXIT/ 5

Exit/ [EX or EXIT/] 38
Extract [XT or EXTRACT] 32
file configuration 9

Fill [FI or FILL] 31

Find Next [FN] 29

Find String [FS or FIND] 29
Forward Word [FW] 24

Go to Mark [GM] 25

HEIGHT 46

help files 17

Home [HM] 24

Horizontal Scroll [HS or HSCROLL 26
INIT 45

Insert Block [IB] 31

Index

- 63 -



Insert Character [IC] 27
Insert File [IF or INSFILE] 33
Insert Line [IL] 27

Insert Mode [IM] 27

Justify [JF or JUSTIFY] 31
Left [LF] 23

Line Numbers [LN] 36

Lower Case [LR] 31

Mark [MK] 30

Memory [MM] 36

Merge [MG] 35

Minus [MI or -] 26

New Line [NL] 23

Plus [PL or +] 26

Position [PO or POSITION] 25
Print [PR] 31

Quit [QT or QUIT] 38

Quit/ [Q/ or QUIT/] 38

Quote [QU] 27

Quote String [QS or QUOTE] 28
Refresh [RF] 36

Replace Global [RG or REPGLOB] 30
Replace Next [RN] 30

Replace String [RS or REPLACE] 29
Right [RT] 23

ROLL 44

Roll [RL or ROLL] 36

Roll Down [RD] 24

Roll Up [RU] 24

Rub Out [RB] 28

Save [SV or SAVE] 33

Set Column [SC or COL] 25

Set Row [SR or ROW] 25

Set Tab [ST] 34

SETEDIT 4, 9

SETUP 3

setup files 3

Show File [SF or SHOWFILE] 32
Show Line [SL or SHOWLINE] 26
Split [SP] 35

START 45

Swap [SW] 25

Swap Disk [SD] 36

Tab [TB] 23
Tabify [TF] 36
TABS 44

Tabs [TS or TABS] 34

TERMINAL 46

terminal configuration 9

Top of Buffer [TP] 25

TRANS 44

Translate [TR or TRANS] 40
Undefine Macro [UM or UNDEFINE] 42
Undelete Line [UL] 27

Up [UP] 23

Upper Case [UR] 31

- 64 -



WIDTH 46

work file 6

WRITE 5

Write [WR or WRITE]

34

- 65 -






Table of Contents

Chapter 1 System Description

1.1 System Utilities

Pt et et st e i sk e et

.

. .
Pt et st ket et poad ek e

.

.

.

.

.

O 00NN PN e

EDIT
SETEDIT
CC

CCB
OPTIMIZE
CODEGEN
HEXTOBIN
RUNC
LINKLOAD

1.2 Files and Devices

Chapter 2 Using the System

2.1 Using the Compiler

2
2
2

.1
.1
1

.

1
2
3

Short Form
Long Form
Compiler Listing

2.2 Using the Run Utility
2.3 Using the Linking Loader

RN MO NND NN

.

« .
WWwWwwwwww

. . . .
WO LW

.

Load Command
Find Command
Symbols Command
Run Command
Build Command
Init Command
Exit Command
Error Messages

Chapter 3 Miscellaneous

Compiler Memory Constraints
Runtime Memory Usage

Accessing Arguments via Pointers
Size and Range of Basic Types
Generating EOF from the Keyboard
Linking Assembly Language

.6
.6

-

1
2

Using the XASM Assembler
Using Another Assembler

PWWN NN e

~

~!

o]

10
11

11
12
12
13
13
14
14
14

17

17
17
18
18
19
19

19
20



3.7 Patches

Chapter 4 Function Libraries

4.1 SYSTEM Library

PR

« e
RN
. .

unlink

4.3 TRSLIB Library

:F‘?;l-\:bf*-f-\bbbbbbbbbbbbb&«bb&b-l—\-l-\-ﬁ*-ﬁ\i-\#‘-i-\42*

P
OO0 NN U1 B W N e

SvC
TIME
DATE
SOUND
CMDLINE
USER
CALLS
SMEMORY
HPSERROR
PEEK
POKE
INP
ouT
WRITECH
WRITESTRING
INKEY
GETKEY

.18 FILE$STATUS

I0$ERROR
DELFILE
RENAME
SETSACNM
SETACNM

.24 CLEARGRAPHICS

CLEARSCREEN
GOTOXY
NOBLANK
READCURSOR
RSETPOINT
SETPOINT
TESTPOINT
EXTMEM

4.4 RANDOM Library

20

23

24

24
24

25

25
25
26
27
28
29

30

30
31
31
31
31
32
32
33
33
33
34
34
34
35
35
35
36
36
36
36
37
37
37
38
38
38
38
39
39
39
39
40

42



4.4.1 OPENRAND

4.4.2 READRAND

4.4.3 WRITERAND

4.4.4 CLOSERAND

4.4.5 Notes and Error Codes
4.4.6 Example

4.5 STRINGS Library

LEN
LEFTS
RIGHTS
MIDS
STR$S
ENCODEI
ENCODER
ENCODED
DECODEI
DECODER
DECODED
CHARACTER
CMPSTR
CONC
CPYSTR
DELETE
FIND
INSERT
REPLACE

s & s e« e s s s s
O 00 NN U P W

E T Ll R SR S T ST N S S S S A A I S O
et pad e et ok ot ok ot
QO ~ OV U P N O

.
[
O

42
43
43
44
44
44

46

46
46
46
46
47
47
47
47
48
48
48
48
48
49
49
49
49
50
50






Chapter 1

System Description

1.1 System Utilities

The program development system consists of several utilities supplied as
executable command files (CMD extensions).

1.1.1 EDIT

The Blaise IT text editor is a customizable full screen text editor that is
used to create programs. The word customizable refers to its ability to be
configured by the user. Editor commands may be mapped to the keyboard to suit
personal preference and macro commands may be defined. A macro command is a
defined sequence of built-in editor commands that may be executed by pressing
a single key.

1.1.2 SETEDIT

A setup file is a file that the editor uses each time it is executed. It
contains a user defined configuration for the editor. The setedit utility is
a program that is used to create and modify setup files.

1.1.3 ¢¢C

The C compiler is simply a program that translates C source programs into
an intermediate language called p-code. The p-code is a low level language
that resembles the assembly language for a stack oriented computer.

Once a program has been compiled, the object p-code program is stored as an
object file (0BJ). The 0BJ file may be executed directly or may be run through
the advanced development package (ADP).

There is no limit to the size of program that can be compiled since a
program may be composed of many functions which are split into separate source
files. However, there is a limit to the size of an individual source file.
The size of a C source file that may be compiled is dependent on the number of



System Description Chapter 1

symbols used in the source file and not necessarily the number of lines.
Excessive use of macro definitions (#define) greatly reduces the size of file
that can be compiled. The compiler should be able to compile a typical 200
line file of C source code. Minimizing the use of global variables allows
larger files to be compiled.

1.1.4 CCB

An overlayed C compiler is provided on Disk3 for compiling larger
programs. Since it must load overlays during the compilation process, it is
slower than the non-overlayed compiler and should be used only if you do not
have enough memory to compile a program. The overlay files (OVn extensions)
must be present when using CCB.

1.1.5 OPTIMIZE

The optimizer is one of the two utililites described in the Advanced
Development Package (ADP) Manual. It is optionally used to further process a
p-code object file.

The OPTIMIZE utility inputs an OBJ file and outputs an optimized object
file, OPT. The purpose of the optimizer is to remove statement redundancy in
the translated object code. The result is a p-code object file that is
approximately 10 to 30 percent smaller. The optimizer should be used where
program size is important. The optimized p-code is an exceptionally compact
representation of the C program.

1.1.6 CODEGEN

The code generator is the second of the two utilities described in the ADP
Manual. The code generator inputs either an OBJ or OPT file and outputs a
machine code object file, COD. The purpose of the code generator is to
translate p-code instructions (which must be interpreted) to machine
instructions (which the computer can execute directly). The result is a
machine code object file that executes approximately 3 to 5 times faster than
a p-code object file. The code generator should be used when execution speed
is important.

A single p-code instruction will typically translate into 2 or 3 machine
instructions. Therefore, a COD file will typically be 2 to 3 times larger
than an OBJ file. This is not a problem for small programs but may be for
large programs. The object code may become too large to fit into the
available memory when the program is executed.

In a typical large program, 90% of the time is spent executing only 10% of
the program. For large programs, selected functions that effect performance
the most can be translated to machine instructions. The bulk of the program
can remain p-code instructions. All three types of files, OBJ, OPT, and COD
can be linked together to form a program. Therefore, large programs can be
developed without sacrificing performance.



Chapter 1 System Description

In C, extern (global) variables limit the size of program that can be
handled by CODEGEN. The size problem usually occurs when using large arrays.
The problem may be solved by simply placing the global variables in a separate
file from the program. The program then declares the variables using the
extern keyword and the two files are compiled separately. Once compiled, the
file containing the program is then run through CODEGEN. Since the other file
contains only data, it need not be run through CODEGEN. The Linking Loader is
then used to link the two files together.

1.1.7 HEXTOBIN

The hex to binary utility on Disk3 converts hex object files (readable) to
binary object files (non-readable). This utility can be used on any object
file created by CC, CCB, OPTIMIZE, or CODEGEN. Translating hex files to binary
reduces the size of the file by approximately 30% and results in faster
loading by the RUNC and LINKLOAD utilities. When this utility is executed, it
prompts for the name of the hex object file to use as input and the binary
object file to use as output. The file extensions must be specified. As a
convention to distinguish binary object files from hex object files, you may
want to name binary files with the extension BIN.

1.1.8 RUNC

The RUNC utility loads and executes an OBJ, OPT, COD, or BIN object file.
This utility provides a fast way to execute a compiled program. The standard
C functions from SYSTEM/OBJ, CLIB/OBJ, PRINTF/OBJ, and SCANF/OBJ are built
into RUNC.

The RUNC utility loads and executes a single object file. If the object
file contains an unresolved reference (a call to a function not present in the
file), then RUNC tries to open the file named RUNC/OBJ to resolve the
references. This provides a mechanism for using RUNC even when performing
separate compilations. Functions not present in RUNC/CMD or in the main
object code file may be placed in the file named RUNC/OBJ. The supplied
RUNC/OBJ file on disk C3 is an example. It contains all the functions from
TRSLIB/OBJ, RANDOM/0BJ, and STRINGS/OBJ. If this file is present with
RUNC/CMD, your program may also call a function in one of these libraries.
The RUNC/OBJ file was created by appending the three libraries together to
form a single file. This single file was then processed by the HEXTOBIN
utility to make the file smaller and load faster.



System Description Chapter 1

1.1.9 LINKLOAD

The LINKLOAD utility may be used to load an OBJ, OPT, COD, or BIN file.
Multiple object files (created by separate compilations) may be loaded. The
LINKLOAD utility links the separate object files together as they are loaded.
This utility does not contain the supplied external library functions. If a
program uses one or more of the functions in an external library, the library
object file must be loaded to link the function(s) to the program.

After the object files are loaded, the program may be executed or a command

file may be built., A command file is a stand alone program that the operating
system can load and execute,

1.2 Files and Devices

All the utilities accept file names in the syntax of the TRSDOS 6 operating
system. TRSDOS 6 file names have up to four parts.

The main part is 1 to 8 characters long and identifies the file. This part
must begin with a letter and may contain any alphanumeric characters.

The second part of the file name is an optional extension which is
separated from the rest of the name by a slash (/). The extension may be 1 to
3 characters in length and is usually used to identify the type of the file
(eg. /C for C source, /OBJ for object code, etc.).

Some of the utilities supply default file extensions. For example, when
the C compiler is executed with a file specified on the command line, the
compiler assumes that the extension is /C and it places the object code into a
file with the same name but an extension of /OBJ. The RUNC command assumes
that its input has the extension /OBJ unless otherwise specified.

OPTIMIZE by default takes its input from a file with an extension of /OBJ
and writes its output to a file by the same name with an extension of /OPT. In
a simlar manner, CODEGEN uses /OBJ as a default input and /COD as the
corresponding ocutput.

The third part of the file name is an optional password. The password is a
sequence of 1 to 8 alphanumeric characters, the first of which must be a
letter. The password is used to limit access to a Ffile.

The fourth part of the file name is the disk drive. This part is also
optional. The drive number is separated from the rest of the file name by a
colon (:). If a drive number is not specified, all available drives will be
searched. The search begins with drive number 0 and continues until the file
is found or there are no more drives to search. If a drive number is
specified, only that drive is searched. Specifying a drive number will insure



Chapter 1 System Description

that a file is placed on a specific drive and will also speed up file access
time.

Example File Names:

DATABASE
ACCOUNT/DAT
SAMPLE2/0BJ:1
REPORT.POIU
SECRET/C.REWQ:1
HOMEWRK : 2

All the system utilities accept device names in addition to file names.
Device names are single characters preceded by a colon (:). The following
devices are supported.

:C the CRT (terminal screen)
:L the Line Printer
:D dummy device






Chapter 2 -

Using the System

This chapter describes how to use the C compiler (CC), the run utility
(RUNC), and the linking loader (LINKLOAD). The EDIT Manual describes the use
of the full screen text editor and the ADP Manual describes the use of the
OPTIMIZE and CODEGEN utilities.

2.1 Using the Compiler

The compiler may be executed in two different ways.

2.1.1 Short Form

The short form requires the minimum amount of typing. It allows a program
to be compiled using a single line command.

CC <{stack-size> file-name
where:

stack-size is the amount of stack space
file-name is the name of a C source file

The compiler, like any C program, requires two fixed size areas of memory
called the stack and heap. The stack is a fixed size area of memory reserved
for the compilers internal variables. The heap is a fixed size area of memory
that is used to store a symbol table for the program being compiled. The
compiler enters every unique identifier in a program into the symbol table as
it compiles.

The stack-size parameter is an optional parameter that allows you to
specify the amount of stack reserved for the compilers internal variables.
The stack-size is expressed as an integer number of bytes that may optionally
be followed by the letter K. The K is a multiplier corresponding to the value
1024. For example, 4K is equivalent to 4096 bytes (4 * 1024).

The amount of stack space required by the compiler varies from one program
to the next. A program containing complex expressions will require more stack
space. Expressions nested inside several levels of parentheses cause the



Using the System Chapter 2

compiler to use a lot of stack space. The angle brackets <> must be used if
the stack-size is specified. The default value of the stack-size parameter is
4608 bytes. This is enough stack space for most programs. The minimum amount
of stack used by the compiler is 4096 bytes.

All remaining memory (not used as stack) is allocated to the heap. The
amount of heap required by the compiler also varies from one program to the
next. A program with lots of identifiers (constants, variables, and
functions) will require more heap. It is the number of identifiers, not the
number of lines, that determines how much heap is required to compile a
program.

When the short form is used, the compiler always sends the program listing
to the crt. At the end of a compile, the compiler displays the amount of
stack and heap used. If there is not enough stack or heap to compile a
program, the compiler will terminate and display the amounts used. The
stack-size parameter may be used to adjust how the memory is partitioned
between the stack and heap. If a compile is terminated due to not enough
stack, the stack-size parameter should be used to specify more stack. If the
termination is due to not enough heap, the stack-size parameter should be used
to specify less stack.

When the compiler is executed using the short form, the file-name should
not specify an extension. The compiler appends the extension C to the
file-name. Even if an extension is specified, the compiler will ignore it and
instead use the C extension. The file name may include a drive specifier to
cause the compiler to search a specific drive for the source file. The
compiler then creates an object file with the same name as the source file
except that the extension OBJ is appended. When the file name includes a
drive specifier, the object file is placed on the specified drive.

Example:
CC <4K> TEST:1 Allocates 4096 bytes of stack and compiles

the program in file TEST/C on drive 1,
creating an object file TEST/OBJ on drive 1.

2.1.2 Long Form

With the long form, the compiler prompts for the complete name (including
extension) of the files to use for the source, listing, and object.



Chapter 2 Using the System

CC <stack-size>
SOURCE = file-name
LISTING = file-name

OBJECT = file-name

where: file—name is the complete name of a file
SOURCE is the input file containing the C program
LISTING is the output file containing the listing
OBJECT is the output file containing the object code

The file names are used as specified. Device names may also be used. This
form provides more versatility. For example, the source and object can be on
different disk drives and the listing can be sent to a file or to the line printer.

Example:
CC <4000> Allocates 4000 bytes of stack and compiles
SOURCE = TEST/C:1 the program in TEST/C on drive 1, sending
LISTING = :L the listing to the line printer
OBJECT = TEST/OBJ:2 object to TEST/OBJ on drive 2.

2.1.3 Compiler Listing

The C compiler produces a listing of the program as it compiles. The
listing contains the text of the source program with some additional
information.

The listing is divided into pages. At the top of each page is a heading.
The heading contains the version number of the compiler, and the page number.
Each page after the first contains a form feed (control/L or #0C) character.
The form feed will cause a page eject on most printers. The number of lines
per page may be changed by a compiler option in the source program. See the
Reference Manual.

1f errors are detected by the C compiler, error messages will appear in the
listing. Error message lines have a string of five asterisks ('*¥¥*¥') at the
beginning of the line. An up arrow will appear pointing to the approximate
location within the line where the error was detected. This will be followed
by one or more error codes. It is possible for a single error to generate
more than one error code. In most cases, the first error code identifies the
cause of the error.

If any errors are detected, a summary of the meanings of the error codes
generated is printed at the end of the listing. Also, an error file named
C/ERR is created that contains a list of the C source lines that had errors.
If an error occurs on a line containing reference to a macro definition
(#define), the expansion of the macro is also displayed on the listing to aid
in determining the reason for the error.



Using the System Chapter 2

2.2 Using the Run Utility

The run utility loads and executes a single object file. The run utililty
contains the object code for the standard C functions from the following
libraries: SYSTEM, CLIB, PRINTF, and SCANF. Therefore, it can be used to
quickly load and execute a compiled program without manually linking the
libraries to the prugram. If there are unresolved references in the object
file, the file named RUNC/OBJ is loaded in an attempt to resolve the
references. This allows the run utility to be used even when performing
separate compilations. Simply place the object code of the separately
compiled functions in the file RUNC/OBJ. The RUNC/OBJ file supplied contains
the functions from the following libraries: TRSLIB, RANDOM, and STRINGS.

RUNC <stack-size> file-name

where: stack-size is the amount of stack space
file-name 1is the name of the object file

The file-name may or may not specify an extension. If none is specified,
then the extension OBJ is appended to the file name. Otherwise, the file name
is used as specified. The file name may also include a drive specifier.

C programs use the stack to store global and local variables and return
values for function calls. This stack is allocated when the program is
executed and the required size is determined by the number and type of
variables declared and the number of and sequence of function calls. The heap
is used to store file descriptors and dynamically allocated variables.

The optional stack-size parameter may be used to adjust how the available
memory is allocated to the stack and heap. By default, half the available
memory is allocated to the stack and half to the heap. The stack is specified
as an integer number of bytes that may optionally be followed by the letter K.
As explained for the compiler, the K is a multiplier with a value of 1024. If
a program terminates with an OUT OF STACK error message, then the stack-size
parameter should be used to specify more stack. If a program terminates with
an OUT OF HEAP error message, then the stack-size parameter should be used to
specify less stack.

Example:

RUNC <15K> TEST:1  Allocates 15360 bytes for the stack
and executes TEST/OBJ on drive 1.

The RUNC command also allows redirection of the standard files stdin and

stdout. Following the file name, the symbols < and > may be used to redirect
stdin and stdout respectively. Either a device or file name may be used to

- 10 -



Chapter 2 Using the System

redirect stdin and/or stdout.

Example:

RUNC TEST <INPUT/DAT >QUTPUT/DAT

2.3 Using the Linking Loader

The linking loader on the disk labeled System3 (copied from '"Disk 2 of 3")
provides facilities for configuring C programs. It provides the ability to
link together separately compiled functions. Programs may be linked and
stored as command files on disk and then later executed from the operating
system as commands. These command files behave in the same way as the
utilities supplied with the operating system.

The linking loader is executed by simply typing LINKLOAD. The linking
loader displays a menu of commands and waits for a command to be selected.

L=Load, R=Run, E=Exit, I=Init, S=Symbols, B=Build CMD
F=Find in library
>>

All commands require only the single letter, although longer names will
also be accepted. To execute a command, simply type its first letter followed
by the enter key. If more information is required, additional prompts will be
supplied. You may type H and press the enter key to redisplay the menu of
commands at any time.

2.3.1 Load Command

The load command is used to load object files into memory. To load an
object file, type "L'" and press the "enter" key. The load command will prompt
with "File(s) =". Type the name of one or more files in standard notation,
including extension. Multiple file names must be separated by commas. You
may optionally follow the "L" command with the file names to avoid the
prompt.

The "L'" command opens the object file(s) and loads the object code into
memory. Each time a function is loaded, its name is displayed on the screen.
The names of global variables are also displayed. This allows you to monitor
the load process as the object file is loaded into memory. The names of
variables or functions declared as "static' are not displayed.

The object code for each C function is compiled into a separate entity.

These are then linked together when they are loaded. This allows functions to
be compiled separately and then linked. Thus, a program may be compiled a

- 11 -



Using the System Chapter 2

piece at a time, and when changes are made, only the parts affected by the
change need to be recompiled. This also allows the creation of libraries of
utilities. These utilities can be loaded with any program that needs them,
but need be compiled only once. The supplied libraries of standard C
functions are an example of such utilities.

In general, the functions within an object file may be split into separate
object files (See the ADP Manual for details). However, it should be noted
that if an object file contains a "static™ function, the individual functions
within that file may not be separated.

2.3.2 Find Command

The Find command "F" is identical to the "LY command except that only
referenced (called) functions within an object file are loaded. This command
should be used when linking the supplied function libraries to your programs.
The "F" command loads only those functions which your program uses.

With the "L'" command, the order in which the functions are loaded is not
important since all functions are loaded. However, the order is important
with the "F" command. When linking your programs with the supplied function
libraries, you should load your program first. WNext load any of the libraries
needed, excluding CLIB and SYSTEM. The last libraries loaded should be CLIB,
followed by SYSTEM. This order insures that a function is referenced before
the object file in which it resides is loaded.

One of the files provided on the disk labeled C3 (Disk 3 of 3) is
CSUPPORT/BIN. This file contains all the ¢ runtime libraries. It was created
by appending all the libraries into a single file (with CLIB and SYSTEM
appended last). The file was then processed by HEXTOBIN to translate the
libraries to binary format. This file may be used if desired rather than
loading the individual libraries separately.

When writing a program consisting of more than one function, or creating
your own library of functions, you should arrange each function so that all
references to it precede its definition. For example, if function A calls
function B, make sure that the definition of function A precedes that of
function B. Otherwise, you will have to load the program or library more than
once to resolve all references.

2.3.3 Symbols Command

The linking loader stores the name and address of each global variable and
function as the object file is loaded. Also stored are the names of functions
that have been called (referenced) by another function, but have not yet been
loaded into memory. This symbol table can be displayed with the "S" command.

The symbols command displays all currently defined or referenced symbols.

The display is paused if the screen fills and the prompt ''f¥ MORE *" appears at
the bottom of the screen. Press the enter key to view the remaining symbols.

- 12 -



Chapter 2 Using the System

One function name is displayed per line. After the function name is a
character that describes the use of that function. A "D'" indicates that the
name is defined. This means that the function has been loaded into memory.

An "R" indicates that the function has been referenced but not yet defined.
This means that a function that has already been loaded makes a call to this
function. All functions that are called must be loaded before the program can
be executed. Global variables will always be displayed with a '"D" tag.

The last item on the line is the address of the symbol. If the symbol is
defined ("D"), then this is the address in memory where the function or global
variable is located. If the symbol has not been defined ('R'"), then this is
the address of the last place it was used (called).

2.3.4 Run Command

After all the object files of a program have been loaded, it can be
executed with the "R" command. The linking loader prompts for the amount of
stack space required by the program. As in the RUNC utility, the default is
to allocate half of the unused memory to the stack, and the other half to the
heap. 1If these space allocations are sufficient, then simply press the enter
key. Otherwise enter a value. As with the RUNC utility, the letter K may be
used as a multiplier of 1024 when specifying the stack.

I1/0 redirection can also be used with the Run command of LINKLOAD. The
redirection must be specified when the linking loader is first executed.

LINKLOAD >:L maps stdout to the line printer

2.3.5 Build Command

Once a program has been loaded, the "B" command can be used to store the
program to disk as an executable command file. Like the Run command, the
Build command prompts for the stack size. The next prompt asks for a file
name. This is the name of the file that will contain the program. You must
type in a file name with a CMD extension. For example, PAYROLL/CMD might be
the name of the command file. The B command causes the program to be saved t«
disk in command file format. The linking loader terminates after building th
command file.

The program may then be executed by simply typing the name of the command
file. 1I/0 redirection may be specified after the command file name. The <
symbol redirects stdin while the > symbol redirects stdout.

PAYROLL <WAGES/DAT >REPORT/DAT

- 13 -



Using the System Chapter 2

2.3.6 Init Command

The "I" command clears the symbol table and redisplays the command menu.
This command may be used if the wrong file is loaded by mistake. It 1is
equivalent to exiting to the operating system and then executing the linking
loader again.

2.3.7 Exit Command

The "E" command causes the linking loader to terminate and return to the
operating system.

2.3.8 Error Messages

*%% CANNOT OPEN FILE

This message is generated when the loader cannot find the file specified
with the "L" command. This may be caused by a misspelling or the wrong disk
‘being in the drive.

#%% UNRESOLVED REFERENCES

When the "R" command is used to execute a program or the "B" command to
generate a command file, the loader checks that all of the functions that are
called within the program have been loaded. 1If there are functions that have
been called but have not been loaded, then this message is generated. At this
point, you can load the required files and repeat the command. The "S"
command may be used to list names of the functions that are not yet defined.
These will be followed by an R tag.

*%% INVALID OBJECT TAG
This message is displayed when a load is attempted on a file that is not a

valid object file. The most frequent cause of this error is an attempt to
load the source program instead of the object.

- 14 -



Chapter 2 Using the System

*%% JTLLEGAL REFERENCE
This message signifies an inconsistent structure in an object file. It is

an indication that the file has been damaged. The best solution is to
recompile the offending program.

- 15 -






Chapter 3

Miscellaneous

3.1 Compiler Memory Constraints

The size of source file that can be compiled is limited by the number of
identifiers rather than the number of lines in the file. The compiler allows
enough space for approximately 200 identifiers (symbols) to exist in a program
being compiled. Each identifier used in a program requires an entry in the
compilers symbol table. Typedef, variable, and function names are all
identifiers in C programs and are entered into the compilers symbol table.

The macro names and definitions used in the #define are also entered into the
symbol table. Excessive use of #define will limit the size of source file
that can be compiled.

3.2 Runtime Memory Usage

The LINKLOAD and RUNC programs load at address 0x3000. The object code for
C programs load immediately above the loader. The next segment above the
object code contains the stack. The stack grows from high memory to low
memory. The remainder of the available memory is used as the heap.

The heap is a section of memory that is used for dynamic storage. Programs
that use the function "calloc" will use storage from the heap. Also, the
dynamic string library functions use storage from the heap. The heap also
contains the buffers used to read and write to files. The C runtime support
routines perform blocking on data from files. Each file is allocated a 256
byte buffer from the heap and information is read or written to this buffer
before being transferred to disk. This improves performance by decreasing the
frequency of disk accesses.

- 17 -



Miscellaneous Chapter 3

3.3 Accessing Arguments via Pointers

The arguments to a function may be accessed through a pointer. This is
useful for functions that accept a variable number of arguments. Printf and
scanf are examples of functions that accept a variable number of arguments.
Both of these functions only declare one argument, the format string, even
though many arguments are typically passed.

When arguments are passed to a function, they are pushed onto the stack.
The first argument is pushed, followed by the second, etc. Since the stack
grows from high memory to low memory, the first argument is at a higher memory
address than the last argument.

Using a pointer corresponding to the address of the first argument, the

remaining arguments are accessed by decrementing the pointer. You must know
the size of each argument in order to access them in this manner.

3.4 Size and Range of Basic Types

The size, range, and accuracy of the basic data types are defined in the
following table.

type size in bytes range of values accuracy
char 1 "\0' to '\377'

short 1 -127 to 127

int 2 -32768 to 32767

unsigned 2 0 to 65535

(pointer) 2 0x0000 to OxXFFFF

long 4 ~2147483648 to 2147483647

float 4 +/= 1.7e-38 to +/- 1.7e+38 6 digits
double 8 +/- 1.7e-38 to +/- 1.7e+38 16 digits

Note: All mathematical functions are performed in double
precision and have an accuracy of approximately
9 digits.

- 18 -



Chapter 3 Miscellaneous

3.5 Generating EOF from the Keyboard

When receiving input from the keyboard, the EOF character is the backquote
(*). On the Model 4, backquote is generated by simultaneously pressing the
SHIFT and @ keys.

3.6 Linking Assembly Language

Assembly language subroutines can be assembled using any available
assembler and linked to a C program.

The TRSLIB CALLS function is used to call assembly language subroutines.
The first parameter to CALLS$ is the address of the assembly language
subroutine. The remaining parameters of CALLS$ allow you to define values for
the Z-80 registers. The CALLS function transfers control to the assembly
language routine at the specified address. The C program regains control when
a 7-80 return instruction is executed. The C program should define values for
the registers that the subroutine uses as input parameters. All register
values are returned to the C program through the argument list of CALLS.

The LINKLOAD utility cannot load object files created by your assembler.
Therefore the assembly language subroutines must be origined to load at
specific addresses. The next section, Patches, has the appropriate address at
which assembly language subroutines may begin loading. 1In the C program, the
first argument to CALLS must then specify the load address when calling a
subroutine.

The LINKLOAD utility must be patched to change the address at which it
starts loading object files. This reserves space for the assembly language
subroutines. The next section, Patches, explains how to patch the LINKLOAD
utility so that space is reserved for the assembly language subroutines.

The assembly language subroutines must be loaded prior to executing the
linking loader. Use any appropriate mechanism to load the assembled
subroutines. If your assembler generates command (CMD) files, the operating
system LOAD command will load the subroutines. Once all the subroutines are
loaded, execute the patched version of the linking loader and load in the C
object files. You may then Run the program or Build a command file.

- 19 -



Miscellaneous Chapter 3

3.7 Patches

Normally when a program built with the linking loader terminates, the last
instruction address along with the amount of stack and heap used is
displayed. After a program has been completely debugged this information is
no longer needed. The following patch will eliminate these messages. The
patch should be applied to a copy of the linking loader. After the patch is
applied, any command file built with the patched copy of the linking loader
will not print the stack and heap message.

1. Make a copy of the linking loader.

TRSDOS Ready
COPY LINKLOAD/CMD TO LASTLINK/CMD

2. Apply the patch using the TRSDOS PATCH command.

TRSDOS Ready
PATCH LASTLINK/CMD (X'3915'=01)

To link assembly language subroutines, the LINKLOAD utility must be patched
to change the address at which object files are loaded. The assembly language
subroutines can begin loading at address 0x80DF. The linking loader must then
be patched to start loading above this address, providing the space needed for
the subroutines. For example, if the subroutines require 256 bytes of space,
the linking loader can be patched to start loading at address Ox8IDF. If they
require 512 bytes of space, the starting load address should be 0x82DF. There
is no problem with providing more space than needed for the assembly language
subroutines. However, if too little space is provided, the loader will load
object files over the assembly language subroutines.

The following patches change the upper byte of the address at which the
linking loader begins loading object files. The value of this byte may be
changed to allow however much space is required by the assembly language subroutines.

1. Make a copy of the linking loader.

TRSDOS Ready
COPY LINKLOAD/CMD TO LINKASM/CMD

2. Apply the patches using the TRSDOS PATCH command.
The following patches provide 512 bytes of space
for assembly language subroutines between the
addresses 0x80DF and 0x82DF. Notice that two
separate patches must be applied. The first patch
is always the same while the second varies with the

- 20 -



Chapter 3 Miscellaneous

amount of space required for the assembly language.
TRSDOS Ready

PATCH LINKASM/CMD(X'77F4'=21 00 00:X'7749'=C9)
PATCH LINKASM/CMD(X'77E3'=DF 82:X'7414'=DF 82)

- 2] -






Chapter 4

Function Libraries

TRS-80 C is supported by 7 libraries of functions: SYSTEM, CLIB, PRINTF,
SCANF. TRSLIB, RANDOM, and STRINGS. The supplied file named CSUPPORT contains
all 7 of these libraries. All C programs implicitly use some of the functions
in both SYSTEM/OBJ and CLIB/OBJ. The other libraries are not required unless a
function in them is explicitly called by the program.

The first 4 libraries contain the standard C functions. SYSTEM/OBJ
contains the runtime system interface routines and the low level C library
functions. CLIB/OBJ contains most of the standard C library functions.
PRINTF/OBJ contains the standard C functions, printf, sprintf, and fprintf.
SCANF/OBJ contains the standard C functions, scanf, sscanf, and fscanf.

The next 3 libraries contain non-standard C functions. TRSLIB/OBJ contains
functions which provide access to specific Model 4 or TRSDOS 6 features.
RANDOM/OBJ contains random access file functions. STRINGS/OBJ contains
dynamic string functions.

C programs may be executed with either the RUNC or the LINKLOAD utility.
The RUNC utility contains all the functions from the 4 standard C libraries.
When executing a program with RUNC, any library function used by the program
is automatically linked. The LINKLOAD utility does not contain any of the
functions in the 7 libraries. When executing a program with LINKLOAD, any
library function used by the program must be linked by loading the library
file which contains the function. LINKLOAD and the libraries are on the disk
previously configured and labeled as System3.

Each set of library functions is described in the following pages. Any
function that is not declared to return a value of type int must be externally
declared by the program that uses it. For example, 'void SVC():'" should be
used to declare the TRSLIB function SVC. The special type '"wvoid" is used to
declare functions that do not return values. Also note that some of the
library functions have arguments declared to be of type char. Normally this
is not possible in C because there is no way to pass an argument of type
char. This is due to the conversion rules for C expressions. Values of type
char are automatically converted to type int before being passed. The
compiler option /*$NO CONVERT*/ prior to a function call prevents the
automatic type conversion. Therefore, when using a library function that has
an argument declared as type char (pointer to char is OK), the /%*SNO CONVERT*/
compiler option must precede the call to the function. After the call, the
/*$CONVERT*/ compiler option may be used to turn automatic type conversion on
again.

- 23 -



Function Libraries Chapter 4

4.1 SYSTEM Library

The SYSTEM library contains the functions that interface to the C runtime.
It includes the functions (getc, putc, cfree, calloc, cfree, ftoa, atof, atan,
log, exp, sqrt, sqr, sin, cos, and abs), which are described in the Reference
Manual. It also includes several functions which are equivalent to functions
in TRSLIB, (_svc, _call, hperr, _ioerr, setacnm, cmdline). In additiom, it
contains the buffered I/0 functions (read and write).

4.1.1 read

read(fd, buffer, n)
int fd, n;
char “*buffer;

The read function provides buffered input. The fd argument is the file
descriptor number that specifies the file from which the input is received.
For example, stdin->fd is the file descriptor number for stdin. The buffer
argument is a pointer to where the input data is stored. The n argument is
the number of characters that are input from the file and stored in the
buffer. The read function returns the number of characters that were actually
input from the file. A return value of 0 indicates the end of file. A return
value of -1 indicates that an error occurred during the read operation.

4.1.2 write

write(fd, buffer, n)
int fd, n;
char *buffer;

The write function provides buffered output. The fd argument is the file
descriptor number that specifies the file to which the output is sent. For
example, stdout->fd is the file descriptor number for stdout. The buffer
argument is a pointer to where the output data is stored. The n argument is
the number of characters that are output from the buffer to the file. The
write function returns the number of characters that were actually output to
the file. A return value of -1 indicates that an error occurred during the
write operation.

- 24 -



Chapter 4 Function Libraries

4.2 CLIB, PRINTF, & SCANF Libraries

The CLIB, PRINTF, and SCANF libraries contain the functions for which C
source code is provided. The PRINTF library contains the standard C functions
(printf, fprintf, and sprintf). The SCANF library contains the standard C
functions (scanf, fscanf, and sscanf). The CLIB library contains the
remainder of the C functions, including a function called _initio that is
called at the start of execution for all C programs. The functions in these
three libraries (excluding _initio and the Unix system interface functions:
open, creat, close, unlink, and lseek) are described in the Reference Manual.

4.2.1 _initio

_initio(stdfiles)
int stdfiles

The initio function is called at the start of execution of every C program
to allocate the file table, open (stdin, stdout, & stderr), and perform I/0
redirection. The stdfiles argument is used to control whether or not the
standard files are opened. If the main function of the program is named
"main", then the stdfiles argument is 1, the standard files are opened, and
the main function is called. 1If the main function of the program is named
" main", then the stdfiles argument is 0, the standard files are not opened,
and the main function is called. No redirection is performed unless the
standard files are opened.

4.2.2 open

fd = open(name, rwmode);

int  fd; /* file descriptor %/
char “*name; /* name of the file to open */
int  rwmode; /* access mode */

...25...



Function Libraries Chapter 4

Description:

The open function uses the first argument as the name of a file and
attempts to open the file. The rwmode argument specifies how the file will be
accessed. A value of 0 specifies read only, 1 specifies write only, and 2
specifies read/write. It is an error to try to open a file that does not exist.

Returns:

fd = file descriptor (file number) if successful
fd -1 if unsuccessful

Example:

#include "stdio"

main()

{
int fd;
int c;

FILE  *fp;
fd = open("test/dat",0);
if (fd !'= -1) (
fp = _iob[fd];
while ((c = getc(fp)) != EOF) putchar(c);

4.2.3 creat

fd = creat(name, pmode);

int  fd; /* file descriptor *

char “*name; /* name of the file to open */

int  pmode; /* protection mode *
Description:

The creat function uses the first argument as the name of a file and
creates the file. 1If the file already exists, then it is truncated to 0
length., It is not an error to creat a file that already exists. The pmode
argument specifies the protection mode for the file. This has no effect under
TRSDOS 6.

_.26._



Chapter 4 Function Libraries

Returns:

fd = file descriptor (file number) if successful
fd -1 1f unsuccessful

]

Example:

#include "stdio"

main()

{
int fd;
char c;

FILE *fp;
fd = creat('"new/dat",0);
if (fd != -1) (
fp = _iob[£fd];
for (c="a'; c<='z"; c++) putc(c,fp);

s

4.2.4 lseek

pos = lseek(fd, offset, origin);

long pos; /* current position in file */

int  fd; /* file descriptor */

long offset; /* desired relative position */

int  origin; /* location to position from */
Description:

The lseek function is used to randomly position to any character within a
file. The file must have been opened by the open function using an rwmode of
2 (read/write access) in order to use the lseek function. The offset argument
specifies how many characters (relative to some starting position) that the
files pointer is moved. The origin argument specifies the starting position.
The origin may be any one of three values. A value of 0 indicates the
positioning occurs relative to the beginning of the file, 1 indicates relative
to the current position, and 2 indicates relative to the end of the file. You
must be sure that the offset value passed to lseek is a long integer. When
using integer constants, append the L suffix to the constant.

- 27 -



Function Libraries

Returns:

pos = current position of file if successful

pos = -1 if unsuccessful
Example:
main() * gppend example %/
{
int fd;
fd = open('old/dat',2);
lseek(fd, 0L, 2); .
write(fd, "This is added to the end of the file', 36);
b

4.2.5 close

status = close(fd);

int status; /* return status */
int fd; /* file descriptor %/
Description:

Chapter 4

The close function closes the file associated with the file descriptor fd.

This frees the file descriptor for use with another file.

Returns:
status = 0 if successful
status = -1 if unsuccessful
Example:

#include "stdio"

main()
{
int fd;
char c
fd = creat("new/dat",0);
if (close(fd) != -1) {

fd = open('"new/dat",2);
write(fd, "abcdefghijklmnopqrstuvwxyz', 26);
close(fd);

- 28 -



Chapter 4 Function Libraries

4.2.6 unlink

status = unlink(name);

int status /* return status */
char “*name; /% name of file to delete */
Description:

The unlink function removes the file specified by name from the directory.
The file should be closed before calling unlink.

Returns:
status = (0 if successful
status = -1 if unsuccessful
Example:
main()
{
if (unlink(''new/dat') != -1)
puts('new/dat deleted");
)

...29_



Function Libraries Chapter 4

4.3 TRSLIB Library

The TRSLIB functions are provided for interfacing to some of the specific
features of the Model 4 and the TRSDOS 6 operating system. These functions
are shown in the form of function definitions and should be declared or called
accordingly.

4.3.1 8vC

void SVC(a, status, bc, de, hl, ix, iy)
char *a, *status;
int  *bc, *de, *hl, *ix, *iy;

(same as svc in SYSTEM Library)

SVC is used to make TRSDOS 6 supervisor calls. Supervisor calls provide
the mechanism for executing various TRSDOS 6 operating system routines. See
the Technical Reference Manual (Cat. No. 26-2110) for an explanation of the
available supervisor calls.

The arguments passed to SVC will be loaded into the 7-80 registers. The
arguments will also return the values of the 7Z-80 registers when the SVC
routine terminates. The A register is used to specify an SVC number which
determines which operating system routine is executed. Each operating system
routine has specifications for which Z-80 registers are used to pass information.

main()
{
void SvVC();
char a, status;
int be, de, hl, ix, iy;
puts("This program displays directories");
do {
printf("Enter the drive number: ");
scanf("%d", &be):
a = 34; /* @DODIR from 26-2110 %/
if (bc > -1 && bec < 8) SVC(&a,&status,&bc,&de,8hl,&ix,&iy);
)
while (bc > -1 && be < 8);

- 30 -



Chapter 4 Function Libraries

4.3.2 TIME

void TIME(s)
char s[8];

TIME assigns the string s the time of the system clock in the form
hh:mm:ss. This function does not terminate the string with a '\0’.

4.3.3 DATE

void date(s)
char s[8];

DATE assigns the string s the date of the system clock in the form
mm/dd/yy. This function does not terminate the string with a '\0'.

4.3.4 SOUND

void SOUND(tone, duration)
int tone, duration;

SOUND is used to generate sound using specified tone and duration codes.
The TONE argument should be passed as a number between 0 and 7 with 0 being
the highest tone and 7 being the lowest. The DURATION argument should be
passed as a number between 0 and 31 with 0 being the shortest and 31 being the
longest.

4.3.5 CMDLINE

void CMDLINE(location, origin)
char *location, *origin;

(same as _cmdline in SYSTEM Library)

The CMDLINE function returns pointers to the command line stored by the
operating system. FEach time a command is executed from the TRSDOS Ready
prompt, all characters typed are stored in a buffer within the operating
system. For example, when RUNC DATABASE FILEl <enter> is typed, the operating
system stores RUNC DATABASE FILEl in the buffer. The origin argument returns
the address of the beginning of the command line buffer. The location
argument returns the address of the character in the buffer that begins with
the first non-blank character following the command name.

- 31 -



Function Libraries Chapter 4

Using the above command line as an example:

origin  points to RUNC DATABASE FILEl
location points to DATABASE FILEL

4.3.6 USER

void USER(addréss, data)
char “*address;
int *data;

This function interfaces to assembly language routines resident in memory.
"Address" points to the location of the first instruction of the routine.

Information is passed to the assembly language routine through the "data"
argument. When the assembly language routine is entered, the HL register pair
contains two bytes loaded from the location pointed to by ''data". When the
routine exits, the two byte value in the HL register pair is stored at the
location pointed to by "data'l.

The assembly language routine is entered with a standard 780 call
instruction and should be exited via a return. All 780 registers are
available for use in the assembly language subroutine. The Z8(0 stack may also
be used as long as it is restored to its entry condition before the routine is
exited,

4.3.7 CALLS

void CALL$(address, a, status, bc, de, hl, ix, iy)
char *address, *a, *gtatus;
int *bc, *de, *hl, *ix, *iy;

(same as call in SYSTEM Library)

This function can be used in a similar manner to USER to call assembly
language subroutines. The difference is that CALLS permits you to set up all
of the 780 registers from C. The values passed (except status) will be in the
registers when the subroutine is entered. When the subroutine returns, the
current contents of all registers are stored at the locations pointed to by
the arguments. Status is the 780 flag register.

- 32 -



Chapter 4 Function Libraries

4.3.8 SMEMORY

void $MEMORY(stack, heap)
int *stack, *heap;

This function allows a program to determine the amount of memory currently
available. The argument "stack" returns the current number of bytes remaining
in the stack and the argument "heap' returns the number of bytes remaining in
the heap.

4.3.9 HPSERROR

void HPSERROR{newstate, oldstate)
char newstate, *oldstate;

(must use compiler option /$NO CONVERT*/)
(same as hperr in SYSTEM Library)

This function sets the state of the heap error recovery flag within the C
runtime system. By default, this flag is set to O (false). When the flag is
set to a binary 1 (true), a fatal runtime error occurs if there is an attempt
to allocate more space from the heap than is available. The fatal error
causes the program to terminate. The '"nmewstate' argument contains the value
to which the flag is set. The value of the flag prior to the call is stored
at the location pointed to by "oldstate'.

4.3.10 PEEK
char PEEK{address)
char *#address;
This function returns the contents of any memory location. It may be used
to examine memory or memory mapped input devices. The "address" argument

points to the memory location. The contents of this location (one byte) is
returned.

- 33 -



Function Libraries Chapter 4

4.3.11 POKE

void POKE(address, value)
char *address, value;

(must use compiler option /*$NO CONVERT#*/)
POKE is used to alter the contents of any location in memory. It may also
be used to write to memory mapped output devices. The "address" argument

points to the memory location. The "value" argument contains the byte which
is stored at that location.

4.3.12 INP
char INP(port)
char port;
(must use compiler option /*$NO CONVERT*/)
This function performs input from a 280 IO port. The "port" argument

contains the Z80 port number. A one byte value is read from the Z80 port and
returned.

4.3.13 ouT
void OUT(port, value)
char port, value;
(must use compiler option /*$NO CONVERT*/)
This function performs output to a Z80 port. It may be used in conjunction
with the function INP to communicate with devices interfaced as input or

output ports. The "port" argument contains the Z80 port number and the
"value" argument is written to that port.

- 34 -



Chapter 4 Function Libraries

4.3.14 WRITECH

void WRITECH(ch)
char ch;

(must use compiler option /*$NO CONVERT*/)

This function writes a single character to the terminal. The argument 'ch"
is output to the crt. This function may be used to save space by avoiding the
creation of a file descriptor.

4.3.15 WRITESTRING

void WRITESTRING(s, first, last)
char s[];
int first, last;

This function writes a portion of a string of characters to the crt.
"First" is the index of the first character to be written. The index for the
string starts at 1. "Last'" is the index of the last character to be written.
The total number of characters displayed is (last - first + 1). If last is
less than first, no characters are written. Like WRITECH, this function saves
space by avoiding the creation of a file descriptor.

4.3.16 INKEY

void INKEY(ch, ready)
char *ch, *ready;

This function attempts to obtain a character from the keyboard. If a key
is pressed at the time the call is made, the character generated by the key is
stored at the location pointed to by "ch" and a binary 1 is stored at the
location pointed to by '"ready'". If no key is pressed at the time of the call,
the space character ' ' is stored at the location pointed to by "ch" and a
binary 0 is stored at the location pointed to by 'ready".

- 35 -~



Function Libraries Chapter 4

4.3.17 GETKEY

char GETKEY()

This function waits for and returns the next character from the keyboard.
4.3.18 FILESSTATUS

char FILESSTATUS(file)
char *file;

This function returns the status of a file. The "file" argument is a
pointer to the actual file descriptor. For example, "stdin->file" rather than
simply "stdin" must be passed. The function returns the operating system
error code for the latest IO (input or output) operation. If no errors have
occurred, then zero is returned.

‘4.3.19 TIOSERROR

void IOSERROR(newstate, oldstate)
char newstate, *oldstate;

(same as _ioerr in SYSTEM Library)
(must use compiler option /*$NO CONVERT*/)

This function sets the state of the IO error recovery flag within the C
runtime system. By default, this flag is set to binary 0 (false). If the
error recovery flag is set to a binary 1 (true), then any subsequent error
during an I0 operation will cause a fatal runtime error to terminate the
program. The 'mewstate" argument contains the value to which the I0 error
recovery flag is set., The value of the flag prior to the call is stored at
the location pointed to by "oldstate".

4.3.20 DELFILE

void DELFILE(name, status)
char “*name,
int *gtatus;

This function deletes a file from any disk in the system. The '"name"
argument points to the TRSDOS name of the file, including (optional) drive
specification. The name must be terminated by a carriage return ('\r'). The
operating system error code is stored at the location pointed to by '"status".
The error code is 0 if the delete operation is successful.

- 36 -



Chapter 4 Function Libraries

4.3.21 RENAME

void RENAME({oldname, newname, status)
char *oldname, *newname;
int *status;

RENAME changes the name of a TRSDOS file. The "oldname" argument points to
the old name of the file. The "newname' argument points to the new name of
the file. The names should be valid TRSDOS file names terminated by a
carriage return ('\r'). The operating system error code is stored in the
location pointed to by 'status'. An error code of 0 indicates that the rename
operation was successful.

4.3.22 SETSACNM

void SETSACNM(file, name, length, id)
char *file, *name, *id;
int length;

(same as _setacnm in SYSTEM Library)

SETSACNM is used to associate the name of the physical file or device to a
file descriptor. The argument file is a pointer to a file descriptor (eg.
stdin->file). The name argument is a pointer to a string containing the name
of the disk file. The argument length is an integer that specifies the length
of the file name. The argument id is a pointer to an 8 character string that
specifies the identifier that is displayed if a subsequent I/0 error occurs
with this particular file. The first character of the identifier must be

uppercase.
4.3.23 SETACNM

void SETACNM(file, name)
char *file;
STRING #*name;

The library function SETACNM serves the same purpose as SETSACNM but is
simpler to use. The file argument is a pointer to a file descriptor (eg.
stdout->file). The name argument 1is a pointer to the file or device name.
Notice that name is a pointer to a dynamic string as defined in stdio. The
SETACNM function frees the dynamic string before exiting to recover the
space.

- 37 -



Function Libraries Chapter 4

4.3.24 CLEARGRAPHICS

void CLEARGRAPHICS()

This function clears the screen with blanks.
4.3.25 CLEARSCREEN

void CLEARSCREEN()

This function does the same thing as CLEARGRAPHICS.

4.3.26 GOTOXY

void GOTOXY(x, v)
int x, y;
This function positions the cursor on the screen at the specified
location. The value of "x' should be in the range of O to 79 and the value of
"y'" should be in the range of 0 to 23. The top left cormer of the screen

corresponds to x = 0 and y = 0.

4.3.27 NOBLANK

void NOBLANK(redisplay)
char redisplay;

(must use compiler option /*$NO CONVERT*/)

When the Model 4 video screen receives a carriage return ('\r'), the next
line after the line containing the cursor is erased. The NOBLANK function is
used in conjunction with input files which are connected to the keyboard to
prevent the next line from being erased when the <enter> key is pressed. The
NOBLANK function must be called with the argument "redisplay" set to binary 1
(true) to prevent the <enter> key from erasing the next line. NOBLANK must be
called before the input file is opened (fopen) in order to have any effect,
Therefore, the "stdin" file cannot be used unless _main is used to prevent it
from being automatically opened.

When a program is executed from a JCL file, an input file connected to the
keyboard receives input from the JCL file instead. To prevent this from
occurring, NOBLANK('\1') may be executed prior to opening the input file.

- 38 -



Chapter 4 Function Libraries

4.3.28 READCURSOR

void READCURSOR(x, y)
int *x, ¥y

This function is used to obtain the current position of the cursor on the
screen. The column position of the cursor is stored at the location pointed
to by "x'". The column value will always be in the range of 0 to 79. The row
position of the cursor is stored at the location pointed to by '"y". The row
value will always be in the range of 0 to 23. The position 0,0 corresponds to

the upper left hand corner of the screen.

4.3.29 RSETPOINT

void RSETPOINT(x, y)
int X, ¥;

This function clears (turns off) a graphics point on the screen. The
position of the point is specified by the "x" and "y'" parameters. The "x"
argument should be in the range of 0 to 159 and the "y" argument should be in
the range of 0 to 71. The position 0,0 corresponds to the upper left hand

corner of the screen.
4.3,30 SETPOINT

void SETPOINT(x, y)
int X, V3

This function sets (turns on) a graphics point on the screen. The position
of the point is specified with the '"x" and "y" arguments. The "x" argument
should be in the range of 0 to 159 and the "y" argument should be in the range
of 0 to 71. The position 0,0 corresponds to the upper left hand cormer of the

screemn.
4.3.31 TESTPOINT

char TESTPOINT(x, y)
int X, V;

This function tests the state of a graphics point on the screen. The
position of the point is specified with the "x" and 'y" arguments. The "x"
argument should be in the range of 0 to 159 and the "y" argument should be in
the range of 0 to 71. The value returned for the function is a binary 1 (true)

if the point is set (turned on) and 0 (false) if the point is cleared (turned

_39_



Function Libraries Chapter 4

off).

4.3.32 EXTMEM

void EXTMEM(operation, bank, localaddress, extendaddress,
blocksize, status)

char operation, *localaddress, *extendaddress;

int bank, blocksize, *status;

(must use compiler option /*$NO CONVERT*/)

The Model 4 can contain up to 128k bytes of memory. This function allows a
C program to use the top 64k of memory to store data under program control.
For this function to work, at least one bank of 32k must be free (not used by
memdisk or some other program). The argument "bank" is used to specify the
bank number in extended memory. The two upper banks in a 128k machine are
banks 1 and 2.

The '"operation'" argument tells EXTMEM which operation to perform. The
EXTMEM function supplies all needed operations including allocating and
releasing banks of memory. The operating system error code is stored at the
‘location pointed to by "status". An error code of 0 indicates that the
operation completed successfully. See the TRSDOS 6 Technical Manual for
details.

operation = '\0';
The "bank' of memory is released.

operation = "\1';
The "bank'" is tested to determine its current state. A
status of 1 indicates the bank is busy (in use) and a status
of 0 indicates the bank is available.

operation = '\2';
Reserves the selected "bank" of memory and makes it
available for use by EXTMEM. The selected bank is marked
as being in use.

operation = '\3';
Copys a block of data from extended memory to local
memory. ''Extendaddress' points to the block in
extended memory. The addresses in extended memory range
from 0x8000 to OxFFFF. 'Localaddress" points to the block
in local memory. "Blocksize" is the size of the block in bytes.
The size of a data structure can be obtained using sizeof.

operation = '\4';
Copys a block of data from local memory to extended memory.
The arguments are the same as for "operation" = '\3'.

- 40 -



Chapter 4

The following sample program illustrates use of EXTMEM.

and retrieved from extended memory.

main()
{
void EXTMEM();
float r{120], r2[120];
char release=0,test=],reserve=2,retrieve=3,store=4;
int i, *status, size=sizeof(float)*120;
/% turn off automatic type conversion on parameters */
/*$NO CONVERT*/
/* allocate bank 1 of extended memory */
EXTMEM(reserve,l,r,0x8000,size,&status);
if (status != 0) printf("unable to allocate bank 1\n");
else {
for(i=0; i<120; i++) rl[il=i;
/*store data in extended memory*/
EXTMEM(store,l,r,0x8000,size,&status);

if (status != 0) {
printf('can't store data in memory\n");
exit();
b

/*retrieve the data¥/
EXTMEM(retrieve,l,r2,0x8000,size,&status);

if (status != 0) {
printf("can't get data from extended memory\n");
exit();
b

EXTMEM(release,1,r,0x8000,size,&status);
for(i=0; i<120; i++) printf("%Zf\n", r2[i]);
b

printf("test completed\n");

by

- 41 -

Function Libraries

An array 1is stored



Function Libraries Chapter 4

4.4 RANDOM Library

Random access files are files in which records can be both read and written
in any order. All the records in a random file are the same length. The
length can be anywhere between 1 and 256 bytes. All data in a random file
record is stored in binary format.

The following C functions are provided to allow random access to the
records in a file. There are four random file functions. The OPENRAND
function opens a random file, READRAND reads a record from the file, WRITERAND
writes a record to the file, and CLOSERAND closes the file.

Each of the functions requires an argument that is a pointer to a 32 byte
buffer used as a file descriptor. The OPENRAND function creates the file
descriptor and stores it in the buffer. A pointer to this buffer must then be
passed to each of the other functions.

4.4.1 OPENRAND

void OPENRAND(f, recordlen, name, status)
char *f;

STRING *name;

int recordlen, *status;

f - A pointer to a 32 byte block of memory where OPENRAND
stores the file descriptor.

recordlen - The length in bytes of a record. The size of a record
may be determined using sizeof. For example,
recordlen = sizeof(int) if a record contains a single
integer. The value of recordlen must be between 1
and 256.

name -~ A pointer to the dynamic string that contains

the name of the random file.

For example, name = stods(""DATABASE/DAT").

A pointer to an integer that will contain the

error status of the open operation.

An error status of 0 indicates that the open was

successful. Otherwise there was an error in

attempting to open the file.

status

- 42 -



Chapter 4 Function Libraries

4.4.2 READRAND

void READRAND(f, recordnum, data, status)
char *f;

int recordnum, *status;

char *data;

f - A pointer to the 32 byte file descriptor.
recordnum - The random file record number (0 to 32767).
data - A pointer to a block of memory large enough

to hold one record. READRAND reads the
record specified by recordnum and stores it
at this memory location.
status - A pointer to an integer that will contain
the error status of the read operation.
A returned status of 0 indicates that the read was
successful. Otherwise, there was an error in
attempting to read from the file.

4.4.3 WRITERAND

void WRITERAND(f, recordnum, data, status)

char *f;

int recordnum, *status;

char *data;
£ - A pointer to the 32 byte file descriptor.
recordnum - The random file record number (0 to 32767).
data - A pointer to a block of memory containing the

data to write to the random file. WRITERAND
writes the data to the record specified by
recordnum.

status - A pointer to an integer that will contain
the error status of the write operation.
A returned status of 0 indicates that the write
was successful. Otherwise, there was an error
in attempting to write to the file.

- 43 -



Function Libraries

4.4.4 CLOSERAND

void CLOSERAND(f)
char *f;

~ A pointer to the 32 byte file descriptor.

4.4.5 Notes and Error Codes

()
(2)

(3)

(4)

All blocking is taken care of by the system.

Detecting the end of file on a random access file

is sometimes not exact. The status parameter should
be checked after a read to determine if the operating
system has detected end of file.

The function OPENRAND is used to open a file for
reading and writing. Opening an empty file and
reading is perfectly legal.

Random file record numbers are defined from 0 to 32767.

Random File Error Codes
Returned By Status Argument

128 - FILE NAME IS NULL OR TOO LONG
129 - RECORD LENGTH TOO LARGE

130 - FILE IS ALREADY OPEN

131 - FILE IS NOT OPEN

Any other returned code is an operating system code.
(See the Model 4 Disk System Owner's Manual)

4.4.6 Example

Chapter 4

The following example illustrates the use of the random file routines. The

status may be checked after each random file operation to determine if an

error occurred.

an operation.

- h4 -

The returned status will be 0 if no error is detected during



Chapter 4

#include "stdio"
main()

{

>

void  OPENRAND(), CLOSERAND(), READRAND(), WRITERAND();
char file[32];
STRING #*name;
typedef struct {
char name[20), address[30];
int age;

} record;
int status;
int recnum;
int i

record data;

name = STODS("RANDOM");
OPENRAND(file,sizeof(record),name,&status);
checkstatus(status);

recnum = 0;

write: printf('"\nrecord number %d\n'",recnum);

printf(" enter name : ")

if (gets(data.name) == NULL) goto read;
print£(" enter address: ");
gets(data.address);

printf(" enter age : ")

scanf("%d%*c" ,&data.age);
WRITERAND(file,recnum,&data,&status);
checkstatus(status);
recnumt+;
goto write;
read: printf("There were %d records entered.\n\n",recnum);
for (i=0; i<recnum; i++) {
READRAND(file,i,&data,&status);
checkstatus(status);
printf("record number %Zd\n",i);

printf(" name = %s\n",data.name);
printf(" address = %s\n",data.address);
print£(" age = %d\n\n",data.age);

>

CLOSERAND(file);

checkstatus(status)
int status;

{

if (status != 0) {
printf('"¥*% error #%d *%*" status);

exit();

- 45 -

Function Libraries



Function Libraries Chapter 4

4.5 STRINGS Library

The following functions are provided for handling dynamic strings. A
dynamic string is defined in stdio as STRING. In these functions, the string
arguments and the returned strings are pointers to dynamic strings.

4.5.1 LEN
LEN(s)
STRING *s;

The LEN function returns the length of a string.
4.5.2 LEFTS

STRING *LEFT$(s, position)
STRING *s;
int position;

The LEFT$ function returns the left portion of the string ending at the
specified position within the string.

4.5.3 RIGHTS

STRING *RIGHTS$(s, position)
STRING *s;
int position;

The RIGHT$ function returns the right portion of the string starting at the
specified position within the string.

4.5.4 MIDS

STRING *MID$(s, position, length)
STRING *s;
int position, length;

The MID$ function returns the portion of the string starting at the

specified position and including the number of characters specified by the
argument length.

- 46 -



Chapter 4 Function Libraries

4.5.5 STRS

STRING *STR$(length, ch)
int length;:
char chy

(must use compiler option /*$NO CONVERT*/)

The STR$ function returns a string of the specified length which i1s filled
with the character argument ch.

4.5.6 ENCODEIL

STRING *ENCODEI(n)
int n;
The ENCODEI function returns a string which is the character representation
of the argument n.
4.5.7 ENCODER
STRING *ENCODER(r)
float 1
(must use compiler option /*$NO CONVERT*/)
The ENCODER function returns a string which is the character representation
of the argument r (for single precision).
4.5.8 ENCODED
STRING *ENCODED(r)
double r;

Same as ENCODER, but for double precision reals.

- 47 -



Function Libraries Chapter 4

4.5.9 DECODEIL
DECODEI(s)
STRING *g;

The DECODEI function returns an integer number which is the binary
representation of the string argument s.

4.5.10 DECODER
float DECODER(s)
STRING ¥*g;
The DECODER function returns a real number which is the binary
representation of the argument s (for single precision).
4.5.11 DECODED
double DECODED(s)

STRING *s;

Same as DECODER, but for double precision reals.

4.5.12 CHARACTER

char CHARACTER(s, position)
STRING *s;
int position;

The CHARACTER function returns the character at the specified position in
the string.
4.5.13 CMPSTR
char CMPSTR(sl, s2)
STRING *sl, *s2;
The CMPSTR function compares the two string arguments and returns a value

based on the comparison. The returned value is 0 if sl1<s2, 1 if sl=s2, and 2
if sl>s2.

- 48 -



Chapter 4 Function Libraries

4.5.14 CONC
STRING *CONC(sl, s2)
STRING *sl1, *s2;

The CONC function returns a string which is the result of concatenating the
string argument s2 to the end of the string argument sl.

4.5.15 CPYSTR
STRING *CPYSTR(s)

STRING *s;

The CPYSTR function returns a copy of the string argument s.

4.5.16 DELETE

STRING *DELETE(s, position, length)
STRING *s;
int position, length;

The DELETE function returns a string that is comprised of the string
argument s after deleting some characters. The number of characters deleted
from s is specified by length. The deletion starts at the character specified
by position, the first character being position 1.

4.5.17 FIND

FIND(subs, s)
STRING *subs, *s;

The FIND function returns an integer number corresponding to the starting

position of the substring argument subs within the string argument s. The
returned value is 0 if subs is not contained within s.

- 49 -



Function Libraries Chapter 4

4.5.18 INSERT

STRING *INSERT(subs, s, position)
STRING #*subs, ¥sg;
int position;

The INSERT function returns a string resulting from inserting subs into s

at the specified position within s. The subs string is inserted prior to the
character at the specified position within s.

4.5.19 REPLACE
STRING *REPLACE(olds, news, s)

STRING *olds, *news, *s;

The REPLACE function returns a string resulting after replacing the
substring olds with the substring news within string s.

- 50 -



Index

Smemory 33

build command 13
call§ 32

cc 1, 7

CCB 2, 3
character 48
cleargraphics 38
CLEARSCREEN 38

close 28
closerand 44
cmdline 31
cmpstr 48
CODEGEN 2
compiler listing 9
conc 49
cpystr 49
creat 26
date 31
decoded 48
decodei 48
decoder 48
delete 49
delfile 36
encoded 47

encodei 47
encoder 47

exit command 14
fileSstatus 36
find 49

find command 12
getkey 36
gotoxy 38

heap 7, 17
hpSerror 33

1/0 redirection 10, 13, 13
init command 14
inkey 35

inp 34

insert 50
io8error 36
leftS 46

len 46

LINKLOAD 4

load command 11
lseek 27
machine instructions 2
mid$ 46

noblank 38



open 25
openrand 42
OPTIMIZE 2
out 34
p-code instructions 1
peek 33
poke 34
read 24
readcursor 39
readrand 43
redirection 10, 13, 13
rename 37
replace 50
right$ 46
rsetpoint 39
run command 13
RUNC 3
setSacnm 37
setacnm 37
gsetpoint 39
size of basic types 18
sound 31
stack 7, 17
stack size default 8
stack size minimum 8
str$ 47
sve 30
symbols command 12
testpoint 39
time 31
unlink 29
user 32
write 24
writech 35
writerand 43
writestring 35
_call 32
cmdline 31
“hperr 33
_initio 25
icerr 36
:setname 37
_sve 30

- 52 -



Table of Contents

Chapter 1 Beginning Concepts

The ¢ function and simple output using printf
Identifiers and reserved words

Constants and variables

Data types: char, int, long, float, and double
Arithmetic operators: +, -, *, /, and %

Chapter 2 Simple I/0 and Expressions

Input and output files: stdin, stdout, and stderr
Format conversions for printf and scanf

Input using scanf and the address of operator, &
Defining constants with #define

Operator precedence and grouping in expressions
Arithmetic using mixed data types

Automatic type conversions

The assignment operators

The increment and decrement operators

Chapter 3 Control Statements

Relational operators: ==, !=, <, >, <=, >=
The 1f and else statements
Compound statements

The while statement
Logical operators: &&, |/,
The for statement

The do-while statement

Chapter 4 Functions

Calling funtions in C

The return statement

Function arguments

Declaring the type of value returned by a function
Functions that return no value: the type void

Chapter 5 More I/0 and Control Statements

Including other files: #include

Including the standard header file: stdio

The getc and putc functions, detecting end of file
The getchar and putchar functions

The break statement

The goto statement and statement labels

The continue statement

Using ? : in place of if-else



Chapter 6 Pointers and Arrays

Using the * operator to declare pointers
The hexadecimal format, %z

Passing arguments by reference
Declaring arrays

Referencing array elements, subscripts
Referencing the whole array

Arrays of characters, strings

The string functions, strcepy and streat
The string format, s

The NULL string terminator

Initializing character arrays

The gets and puts functions

Arrays of more than one dimension

Using pointers to access array elements
Using an array of pointers

The string compare function, strcmp
Pointers to functions

Array of pointers to functions
Initializing arrays in general

Chapter 7 Storage Classes and Scoping

Auto variables, local to a function

Extern variables, global to all functions
Definition vs. Declaration of a global variable
Compiling functions separately

Static variables, local and global

Static functions

Chapter 8 Structures and Dynamic Memory

Structure variable declarations

Referencing members of structure variables
Naming structure definitions

Nested Structures

Pointers to structures and the -> operator
Arrays of structures

The sizeof operator

Dynamic memory allocation, the calloc function
Structure + dynamic memory = linked list

Chapter ¢ File 1/0

Opening files, the fopen function

The getc, putc, fscanf, and fprintf functions
Type definitions, typedef

The fgets and fputs functions

Closing files, the fclose function

63

&1

107



Preface

This manual is intended to be an intermediate level tutorial for the C
programming language. As such, it is aimed specifically at the programmer who
has some experience with a language such as BASIC. This tutorial makes
extensive use of program segments and whole programs as examples to guide the
reader to a basic understanding of the C language. Some readers may also find
it helpful to refer to the C Reference Manual for additional explanations and
detail.

This is a full implementation of C as defined in Appendix A of The C
Programming Language by Brian W. Kernighan and Dennis M. Ritchie. Extensions
to the language are covered in the C Reference manual.




Introduction

The C language has been called a "portable assembler" because programs
written in C can be run on a variety of computers with few or no source level
changes. The features of the C language give the same level of control over
the machine that is found with an assembler. As such, C is an ideal language
for use by systems programmers who consider efficiency a major consideration
in writing systems level tools. C is also becoming the language of choice of
applications programmers. The powerful features of C, together with its
portability, make it a very good language for general purpose applications.

The C programming language was designed and written by Dennis Ritchie at
Bell Laboratories. It is a descendant of the language B, that was originally
written to run under the UNIX operating system, on the DEC PDP-11 computer.
Almost all the tools and the UNIX operating system itself are written in the C
language. As the usage of the UNIX operating system has spread far and wide,
s0 has the use of C.

The purpose of this tutorial is to guide you to an understanding of the
basic characteristics of the C programming language. The objective in
choosing the examples provided in this tutorial was primarily to demonstrate
the topic of discussion. But they will also give you an idea of the typical
uses of the C programming language. While the examples presented in the early
chapters do not necessarily meet this second objective, the majority of the
remaining examples do represent typical C programs.

The best way to learn a new programming language is to write programs using
that language. You are encouraged to enter and execute all the example
programs in this tutorial. Then you should experiment with changing the
programs to gain experience and confidence in working with C.



Chapter 1

Beginning Concepts

This chapter starts with the basic elements of the C programming language.
You'll explore the absolute minimum requirements for a C program. In the
process, you will learn about the basic structure of the C function, the way
to create output in C, and how to document your intentions within a program
using a comment. You'll also be introduced to C's basic data types and
arithmetic operators.

The key element in the structure of a C program is the function, so it is
important for you to understand a C function thoroughly. A function can be
thought of as a black box inside which a task is performed. You really aren't
concerned about how the task is accomplished, just that it was performed. For
example, let's take a function that calculates the square root of a number.
You send that function a number and the function returns the square root of
the number. You don't care how it calculated the answer (as long as it is
correct), you just want the answer.

All C programs consist of a set of one or more functions. The number and
purpose of functions in C programs varies as widely as the weather between the
North and South Poles, but every C program will have at least one function
called main. Main is a special function, which is considered to be the
"driver'" of the program. In C programs, execution of the program always
begins and ends in the main function. In fact, large programs may consist of
only a few statements in main, which do nothing but direct control from one
function to another.

Our first example is a complete but extremely simple C program. When
entered with a text editor and compiled with the C compiler, it will have no
errors:

Example 1.1

main{)
{
)

This program will also run (execute) successfully, although this may be



Beginning Concepts Chapter 1

difficult to prove. The program doesn't do anything that you can see. The
point in presenting this example is to demonstrate the structure of a simple C
program.

This program consists of one function called main. It, like all C
functions, must have a function header (in this case main()) and a body
enclosed by braces ({}). The body in this case is empty.

The function body is also called a block. Anytime you have zero or more C
statements enclosed within braces, this is referred to as a block. The C
statements that appear inside the block can be very simple or very complex.
One thing they all have in common is that they end with a semicolon (;). The
simplest C statement is the null statement composed only of a semicolon. A
block of code containing only the null statement looks like this:

main()
{

; /% null statement */
3

Notice however, there is no semicolon after the closing braces. The braces
tell the compiler to treat the enclosed lines as one unit, but they do not
require a semicolon.

Let's now examine a program that does something to let us know when it has
run.

Example 1.2

main() /* Example 1.2 */
{

printf("One small step for C, one giant leap for me.");

b

You'll know when this program successfully executes, because the message:

One small step for C, one giant leap for me.

will be printed on your screen. The line in our program which says:

printf("One small.... ');

generated the line of print to the screen. This line is an example of a
particular C statement, the function call. It consists of the function name
followed by a list of values enclosed by parentheses (). The values which are



Chapter 1 Beginning Concepts

passed to a function are known as arguments.

In this statement, the function being called is printf. It is a special C
function that outputs to the screen. You tell printf what to output by
passing it an argument. Printf's argument is a sequence of characters known
as a format string:

One small step for C, One giant leap for me.

You'll recognize it as a C string because it is surrounded by double quote
marks (""). Printf's format string consists of characters to be output and
some special format conversion characters. These special characters will be
covered later.

More detail about functions and function calls is also presented later.
For now, you only need an idea of what functions and function calls are like.
Before going on to the next topic however, there is one other item that
appears in our sample program which needs to be discussed.

Note that our funmction call to printf ends with a semicolon (;). The
semicolon denotes the end of this C statement. A statement may be of any
length (even written over several source lines), but it cannot span the
boundaries of a C block. However, a C string can't span across a line
boundary unless a \ (backslash) character is used just before the end of the
line. With this in mind, the previous program could be written:

main()
{
printf(
"One small step for C, one giant leap for me.');

>

Now, let's look at another simple C function:

Example 1.3

main() /* Example 1.3 */
{
printf("This is the way we wash our face,\n");
printf("Wash our face,\n");
printf("Wash our face.\n');
printf{"\n'");
printf("This is the way we wash our face, ");
printf("so early in the morning.\n');
* usually sung to voung children as one scrubs
the face. ¥/



Beginning Concepts Chapter 1

The output resulting from the preceding program would be:

This is the way we wash our face,
Wash our face,
Wash our face.

This is the way we wash our face, so early in the morning.

To cause each phrase to begin on a new line, we insert the newline
character \n (backslash n). The \n is an escape sequence representing the
ASCII character or characters necessary to generate a new line on your
system. There are other escape sequences that will allow you to enter
unprintable characters like backspace or tab into the string(See the Reference
Manual for details). You might notice that by using the newline character,
you can build a single output line using several C statements. TFor example,
the phrase

This is the way we wash our face, so early in the morning.

.is the result of two separate statements:

printf("This is the way we wash our face, '");
printf("so early in the morning.\n");

The first call to printf writes the first half of the output line. The
second call to printf finishes the sentence and outputs the newline
character(s) for your system.

Also demonstrated in this example is the use of the C comment. Anything
appearing between /* (slash asterisk) and */ (asterisk slash) is ignored by
the compiler. Therefore, the line

/* usually sung to young children .... %/

is a comment, and will have no effect on how the program executes or what it
outputs. Comments may be any length, and may be used anywhere in a program.
It is highly recommended that you use comments liberally throughout a
program. This makes the program easier to understand when you return to
modify the program logic.

As you proceed to learn about data types, there are some other important
concepts with which you should be familiar:



Chapter 1 Beginning Concepts

An identifier is a name of a variable or function in a C program. It is
a sequence of letters and digits beginning with a letter. The
underscore character( ) is counted as a letter. An identifier is
case-dependent. That is, upper and lower case letters are different.
Here are some examples:

wdo

/* these are unique id's */
THISID thatid  MixedUp
newname NewName NEWNAME

Identifiers are allowed to be any length. However, only the first eight
characters are significant to the compiler. The following pairs of
names are treated as identical identifier names:

sameIDas sameIDasthis
Student_report Student grade

Certain words have special meaning to the compiler. These words are
known as reserved words. They cannot be used as identifiers. Reserved
words may be entered in upper or lower case. So AUTO, Auto, and auto
(for example) are all taken to be reserved words. The complete list of
reserved words is:

auto double if static
break else int struct
case entry long switch
char extern register typedef
continue float return union
default for short unsigned
do goto sizeof while
void

All symbols used in C are referred to as punctuation. The newline,
blank (space), and tab characters are referred to as whitespace. When
those characters are printed, what shows on your printer or terminal is
blank (whitespace).

Since some terminal keyboards may not contain all the special symbols
used by C for punctuation, there is a set of alternate symbols. Anytime
a symbol appears in the C language that is not on the keyboard,
substitute the appropriate alternate symbol(s). See the Reference
Manual for details.

You should now be comfortable with the concept of a C function. Now, turn
your thoughts to what a C function can do. It is the basic building block of
C. Each function performs a task by manipulating data. There are many ways to
use the word data: data transmissions, data exchange, data retrieved, etc. 1In
this chapter, the word data refers to the values which are used by a program.
They appear as constants or variables.



Beginning Concepts Chapter 1

Constants are fixed values, while variables are changeable. The value of a
variable can be altered during execution of a program, while the value of a
constant will always remain the same. In fact, a constant actually becomes
part of the executable code when a program is compiled. Variables, on the
other hand, cannot be handled this way because the program would have to be
recompiled every time the value of a variable changed.

To circumvent this problem, each variable is assigned a fixed location
(address) in memory. Each time the variable is used, the program goes to that
location and retrieves the value stored there or stores a new value. The
amount of memory space reserved is determined by the variable's declarations.

Let's now turn our discussion to how to declare a variable. Declarations
are specified by giving the reserved word for the data type desired, followed
by the list of variables to be declared. These declarations must appear first
in a block of C code. The data types that can be used in C declarations
include: characters, integers, and floating point numbers. The first one you
will see is the integer. It is a number which can be negative or positive
with no fractional part.

To declare integer variables, you use the reserve word int. The following
are integer variable declarations:

int our_touchdowns, our_field goals;
int our_score, their_score;
int their tds, their fgs;

The words our_touchdowns and our_field goals are variables specified in
what is called a list. In a C declaration you may specify more than one
variable of the same type by listing them separated with commas.

Now that you've seen integer variables, let's talk about how integer
constants look. They are whole numbers like 5 or 25. These constants can also
be negative by writing a minus sign, -, in front of the number(-10). Integer
constants do not have to be declared in any manner before they are used, but
they have to be within the machine dependent limits for an integer data type.

Once you've defined the variables in the declarations, you will want to
give a value to the variables. This is accomplished by a C statement using
the assignment operator(=). The value assigned is either a constant, a
variable, or the result of an expression.

In C, expressions are a combination of symbols that represent a particular
operation (operators) and data values (operands). The operations include
arithmetic operations such as add(+ operator), subtract(- operator),
multiply(* operator), and divide(/ operator). Any sequence of operators and
operands is known as an expression. Some examples of expressions are:



Chapter 1 Beginning Concepts

/* a & b must be declared #*/

b
3
a =1
a + 3
433+b/624%21

The first operator that you will see is the assignment operator, =, First,
make note that this is not the same as the mathematical equals sign. In this

context, it means replacement. A natural tendency is to read a statement like

z = 5;

as "z is equal to five'. 1In C the correct interpretation is "assign the value
of the integer constant five to the variable z". The result of the following
statement is to assign the value 24 to the integer variable our_score.

our score = 24;

Here's a short program example that demonstrates some variable
declarations. Also shown in this example is the use of the assignment
operator (=). The program first declares some integer variables, assigns some
values to those variables, and then prints the values of the variables.

Example 1.4

main() /* Example 1.4 */

/% declare integer variables ¥/
int our_score;

int their score;

int our_ﬁgﬁchdowns, our field goals;
int their tds, their fgs;

/% assign values %/
our score = 24
the?r_score = 14,
our_touchdowns = 3;
their tds = 2;
our_field goals = 1;

their fgs = 0;

/* print the results of the game */
printf (" Home Visitor\n');
printf(""Score %d %d\n",



Beginning Concepts Chapter 1

our_score, their score);

printf("Touchdowns Z%d Zd\n",
our_touchdowns, their_tds);
printf("Field Goals %d Zd\n",

our_field goals, their fgs);

Notice in Example 1.4 that the declarations appear before the statements.
The statements generate code that is executed when the program is run. The
declarations only inform the compiler about the type of variables. They must
appear before all executable statements in a block or function.

Before proceeding onto the topic of other variable types, there is
something introduced in the above program which needs further explanation.
Demonstrated is a call to the formatted print function, printf. In the
statement,

printf(*'Score Zd %Zd\n", our score, their score);

the percent d conversion specification, (%d) reserves the place to print an
integer variable. The format string is printed exactly as it appears up to
the Zd. At that point, printf retrieves the value of the variable named
our_score and prints it. Then, the rest of the characters of the format
string are printed until the second occurrence of 7Zd is encountered. The
second usage of %d in the printf's format string is matched with the variable,
their score. Take a look at the output from this statement:

Score 24 14

Other symbols to use in I/0 format strings, like %d, will be introduced
when the other data types are covered later in this tutorial. For now it is
sufficient that you understand that the percent d (%Zd) is used in format
strings to reserve a place to print integer variables. Notice that this
particular call to printf has three arguments. Did you also notice that the
number of conversion specifications must match the number of additional
arguments passed?

What happens if the arguments to printf don't match the number of
conversion specifications in the format string? If the format string mentions
only two values to be printed, but there are three values passed to printf,
then only two values will be printed. Printf only outputs what it is told in
the format string. If the format string mentions two values, but only one
value is passed, then something unpredictable will be printed(like a large
negative number).

Now let's find out more about what the operators can do with our variables
and constants. The language C, like almost all other languages, provides a
set of symbols called arithmetic operators. The arithmetic operators are used
on any numeric data. This includes floating point and character, as well as
integer data. The symbols used are



Chapter 1 Beginning Concepts

+ addition operator
subtraction operator
multiplication operator
division operator
modulo operator

1

38~ %

The only one of these operators which needs any real explanation is the
modulo operator(%). Modulo is the '"get the remainder of this division"
operator. For example, if you divide 23 by 5 you get 4 with a remainder of 3.
The modulo operation, 23 % 5, then would give us the result of 3.

A character constant is an ASCII character enclosed by single quotes. It
represents a numeric data value in C. The constant 'a' is the representation
for the numeric value of the ASCII small letter a, which is 97. For the
character 'A', the value is 65, for 'B', the value is 66, etc. A complete
list is available in an appendix of the Reference Manual. Non-printable
characters may also be represented by an escape sequence. So '\n' is a

character constant representing the newline character.

Character declarations are similar to the integer declarations. The
following are a few examples:

char aa;
char in char,out char;

Other data type declarations are made in a similar manner. The only
difference is the reserve word for the data type. Other reserve words that
you can use are long, float, & double. Next you'll take a look at what kind
of data is represented in long, float, & double variables.

Floating point data values are numbers that are expressed as fractions,
such as 3.4 or 0.00091234. These real numbers can be very large or very small
and are sometimes expressed in scientific notation as a power of ten.
Examples of real constants:

3.4

.91234e-3. {e stands for exponent)
-923.999

0.2345e23

To declare floating point variables, you use the reserve word float.
Floating point variables allow the maximum range for a numeric value and also
allow fractional parts. The accuracy of a floating point value is not always
exact., Calculations involving floating point values can result in small
errors due to the limited number of digits stored. The small errors can
accumulate in some calculations, thus producing an answer that is not
correct. The data type, double, can be used to make the numbers more exact.
However, the variables declared as double take twice as much memory as
floating point numbers.

- 11 =~



Beginning Concepts Chapter 1

The last two data types to discuss are long and unsigned. These two data
types are both integers. The long data type is used to declare the maximum
size for an integer variable. The long integer type typically allows a larger
range of values to be stored as integers. The unsigned integer is the same
size as the int data type. However, an unsigned integer is capable of storing
a value nearly twice as large as a normal integer. The difference is that an
unsigned integer can not be negative. Only positive values may be stored in
an unsigned variable. The unsigned data type is typically used to store data
that is always positive. For example, the number of items in an inventory
list can not be negative.

Some important points to remember about declarations are:

1. A declaration of a variable actually reserves a place in memory for its
storage.

2. The size of the place reserved is determined by the type specified in
the declaration.

3. All variables must be declared before being used in a statement.
4. Declarations must be placed at the beginning of a block.

Now take a look at how a program can use these various types of data.



Chapter 1 Beginning Concepts

Example 1.5

main() /% Example 1.5 */
{
long total, stock;
unsigned sales;
float price, commission, cost, income;
double profit;
char type;

sales = 45678; /% items sold */

stock = 112502; /* items on hand */
price = 42.50; /* selling price */
cost = 19.95; /% cost of item ¥/
type = 'A';

ot

/* calculate values */
total = stock - sales;
income = price * sales;
profit = (price - cost) * sales;

commission = profit * 0.03;

* print answers %/
printf(
"total inventory = %1d of type Zc\n',total,type);
printf("On sales of Zu items: profit = %f\n",
sales, profit);
printf("Commissions at a rate of 0.03 = %f\n",
commission);

by

The program itself is very simple, but note that in the printf statement,
some new conversion specifications are used. To print integers you used %d to
designate where to place the output value. For long integer variables you use
%Zld, for unsigned variables you use Zu, for floating point variables you use
%#f, and for character variables you use %c.

Having completed this chapter on beginning concepts, you should understand
that all C programs are made up of a set of functions. The C program control
always begins and ends in a special function called main and therefore, every
program must have a function called main. The basic format of C programs,
functions, statements, and comments should be familiar to you by now. You
should also have a rudimentary knowledge of C's basic data types and the
corresponding constants for each type. With this elementary background, you
can now go on to bigger and better programs.

- 13 -






Chapter 2

Simple I/0 and Expressions

The C language itself does not provide any input or output statements. You
can write your own I/0 functions or use the "standard library". This library
is implemented by functions that are provided with each C compiler
implementation. You've already been introduced to one of those standard
functions, printf. Let us find out more about C's input and output.

The standard input and output files for a program consist of three files:
stdin, stdout, and stderr. The input to a C program is assumed to be a stream
of data from stdin, the standard input device. Stdout, the standard output
device is a stream of data output from a C program. The default device for
stdin is the terminal kevboard, while stdout is defaulted to the terminal
'screen. You can direct these standard files to other devices on your computer
system or to a file. However, the method used to redirect I/0 is system
dependent and will not be covered in this tutorial.

The standard error file is stderr. This file is always mapped to the
terminal screen. C programmers use this file to report errors in a program.
You must however, write messages specifically to this file. How to write to a
file, such as stderr, will be covered much later in the tutorial. For right
now, just be aware that C automatically provides that file.

Standard Files

stdin

stderr <{-———-- | program |------ > stdout



Simple I/0 and Expressions Chapter 2

The standard C functions, scanf and printf, perform formatted I/0. Scanf is
used for input. It translates character representations of numbers to an
internal binary format. Printf is used for output. It translates binary
representations of numbers to an external character format. Earlier, you saw
how the format string tells printf about the output format. You also
discovered that printf requires other arguments besides the format string if a
conversion specification is used. Well, scanf uses a format string and other
arguments in a similar manner. It uses the arguments as locations to store
the input it processes. The size of each location is determined by the format
string conversion specification used.

The conversion specifications used by scanf for input are almost exactly
the same as those used in the printf function. There is one minor exception.
The Printf function uses the conversion characters, %f, for a double precision
(double) or for a floating point (float) value. Printf does not need to
distinguish between the two because both type arguments look the same when
printf sees them. You will understand why this is true later when you study
conversion of operands in expressions. However, scanf must know that it is
reading a double precision value so that it stores the correct size data.
Therefore, the conversion specification for scanf must be %1f (long float) for
double precision variables. All the conversion characters you have been
introduced to are listed in this table as a convenient reference:

Type Conversion spec.

int %d

long %1d

char %e

float it

double %41f for scanf, %f for printf

Now take a look at a program that calculates the distance traveled using
input entered through scanf.

Example 2.1

main() /* Example 2.1 */

{ /* figure distance traveled */
int mph,time;
printf("Enter your speed in miles per hour: ');
scanf("%d", &mph) ;
printf("Enter the number of hours: ");
scanf("7Zd",&time);
printf("Miles traveled = %d \n", mph * time);

- 16 -



Chapter 2 Simple I/0 and Expressions

It is important to notice that scanf's arguments are preceded by the
address-of operator, &. Recall that variables are assigned a fixed location in
memory. This is where the value of that variable is stored. Since the
purpose of scanf is to store input values into variables, it must be passed
the locations of the variables.

To fully understand why the address-of operator is required, you need to be
aware that there are two ways of passing arguments to a C function: call by
value and call by reference. When functions are called in G, the variables
are passed to the called function by value(call by value). The function only
knows the value of the variable and not the location where the variable is
stored. This is fine if you do not want to change the value of the variable,
but what happens if you do, like for scanf? By passing the address of the
variable(using the & operator) to scanf, you can change the value of the
variable. This is known as passing the variable by reference. Scanf does the
conversion of the input to its binary representation and then stores the value
at the address of the appropriate variable.

In Example 2.1, if by accident you leave off the & before the variables mph
or time you will have a problem. Scanf will be passed the value of mph, not
its location. Scanf will then attempt to store the input, using the value of
mph as a memory address. Consequently, an area of memory, possibly containing
the operating system or the executable code of your program, will be
destroyed.

Using scanf to input from the terminal increases the program's
flexibility. Let's take a look at the last example of Chapter 1. It will now
take input from the terminal instead of the values being fixed in the
program.

-17 -



Simple I1/0 and Expressions Chapter 2

Example 2.2

main() /* Example 2.2 */

{

b

Take

long total, stock, sales;

float price, commission, cost, income;
double profit;

char type;

* input values to be used */
printf("Please enter the following items '");
printf("to calculate gross profit,\n net profit,");
printf(" and sales commision on a item \n'");

printf("Enter the type of item (1 char.) : ");
scanf("%Zc",&type);
printf("Enter the number of items sold : ");

scanf("%1d", ,&sales); /* items sold */
printf("Enter the number of items on hand");
printf(" at the beginning of the month :");
scanf("%1d",&stock); /* items on hand */
printf("Enter the current selling price : ");
scanf("Zf",&price); /* selling price */
printf("Enter the cost of the item : ");
scanf("%Zf",&cost); /% cost of item */

/* calculate values */

total = stock - sales;
income = price * sales;
profit = (price - cost) * sales;

commission = profit * 0.03;

/* print answers */
printf(
"End of month total inventory = %1d of type %e\n',
total,type);
printf("On a gross income of '");
printf("%6.2f profit = %6.2f\n",
income, profit);
printf("Commissions at a rate of 0.03 = %6.2f\n",
commission);

a close look at the way this program gets its input. Before each

scanf function call, there is a function call to printf. This call outputs a
prompting message on the terminal so that you know the program is waiting for

input.

You also know by these messages, the appropriate data to input. By

using scanf for input, this program will not have to be recompiled every time

- 18 -



Chapter 2 Simple 1/0 and Expressions

new data is tried. Quite a change from the previous version and certainly
easier to maintain!

A new conversion specification, %6.2f, is used in this example. This
prints floating point numbers in a field of at least 6 digits in width with 2
digits to the right of the decimal point. If the argument has fewer
characters than the field width then the number is padded on the left with
blanks.

Another feature of the C language that supports easy changing of program
data is the symbolic constant., This feature, #define, allows you to declare a
symbolic name for a string of characters. Every place the name occurs, the
string of characters is substituted.

Symbolic constants are defined using a special keyword, #define. The
#define is followed by at least one blank, the name of the constant, then at
least one blank, and the string of characters. Upper case names are usually
chosen for symbolic constants as a way to alert you that they are not the same
as variables. Also, notice that a definition of a symbolic constant does not
end with a semicolon. Let's take a look at a few definitions:

#define PI 3.14159

#define MAX pp

#define RSQUARED radius * radius
#define FORMULA PI * RSQUARED

You can use a symbolic comstant anytime after its definition. When the
constant's name is encountered, the compiler substitutes the replacement
string. Here's some source code, using the above definitions, that shows what
the compiler will actually process:

source code expanded code

dim = radius * PI; dim = radius * 3,14159;

cc = 5 % aa + MAX; cc =5 % aa + pp;
printf("™MAX = " ,MAX); printf("MAX = ",pp);
FORMULA ; 3.14159 % radius * radius;

Did you notice that the characters MAX inside the string constant did not
get expanded as a symbolic constant? Also take a look at the nested symbolic
constant definitions of FORMULA and RSQUARED. First, the compiler substitutes
PI * RSQUARED for FORMULA. It then examines the text again and determines that
PI is a symbolic constant also. It then expands the code to
3.14159 * RSQUARED. When the second constant is encountered the code is
expanded to 3.14159 * radius * radius;.

The following is Example 2.2 using a symbolic constant.

_19_



Simple 1/0 and Expressions Chapter 2

Example 2.3

#define PERCENT 0.03
main() /* Example 2.3 */

{

>

long total, stock, sales;

float price, commission, cost, income;
double profit;

char type;

/* input values to be used *
printf(""Please enter the following items ");
printf("to calculate gross profit,\n net profit,");
printf(" and sales commission on an item \n');

printf("Enter the type of item (1 char.) : ");
scanf("%c",&type);
printf("Enter the number of items sold : '");

scanf("%1d",&sales); /* items sold */
printf("Enter the number of items on hand'");
printf(" at the beginning of the month :');
scanf("%1d",&stock); /* items on hand */
printf("Enter the current selling price : ");
scanf("Zf" ,&price); /* selling price */
printf("Enter the cost of the item : ");
scanf("%£'" ,&cost); /* cost of item %/

/* calculate values */
total = stock - sales;
income = price * sales;
profit = (price - cost) * sales;
commission = profit * PERCENT;

/* print answers */
printf(
"End of month total inventory = %1d of type %c\n",
total,type);
printf("On a gross income of %f profit = %f\n",
income, profit);
printf("Commissions at a rate of %f = %f\n",
PERCENT, commission);

The symbolic constant PERCENT is used in this example to define the rate of
the commission. By defining this as a symbolic constant, you will not have to
search through the code to find all the occurrences of 0.03 in order to change
its value. You simply would change the one line defining the symbolic
constant, PERCENT. Notice that PERCENT was passed to printf as an argument in

- 20 -



Chapter 2 Simple I/0 and Expressions

order to print its value. Remember, if PERCENT had been used inside the
format string it would have printed the word "PERCENT" and not its value.

You have been introduced to a few language features that can be used as
tools to build useful C functions. Before you can effectively utilize these
and the C operators you know about however, you must understand more about C
expressions. For instance, what happens when you multiply an integer number
times a floating point number? Or, in what order are the operators applied in
this expression, 3 + 3 * 5 (i.e. Is the answer 18 or 307?)

Now let's look at why these are problems. When several operators are in
one expression, some of the operators are acted on before others. In the
expression 3+3*5 there are two operators, * and +. The arithmetic operators *
(multiplication) and / (division) are higher in precedence than + (addition)
or - (subtraction). This means that multiplication and division are performed
before addition and subtraction. Therefore, the expression would be evaluated
as three times five (fifteen), plus three, resulting in a value of eighteen.
The rule determining the order of evaluation is the operator with the highest
precedence is evaluated first.

If however, you have the expression 3+2-4+6, all of these operations are at
the same precedence level. 1In this case, another rule is applied to the order
of evaluation. This is known as associativity (grouping). All the arithmetic
operators are binary(involving two operands) and group left to right.
Therefore, 3+2-4+6 is evaluated as three plus two which is five, subtract four
which yields one, plus six yields seven. Let's look at another example of
associativity,a=b=c=2. How is this expression grouped? The assignment
operator groups right to left so it is evaluated as: a=(b=(c=2)), the variable
¢ gets the value 2, then b gets the value of ¢ (2), then a gets the value of b
(2).

When expressions are evaluated, the precedence rule is applied first. Then
the grouping rule is applied if there are operators of an equal precedence
level in the expression. If you want to force a calculation to occur in a
manner that does not fit the precedence or associativity rules, you can use
parentheses. They are used in the same manner that parentheses are used in
algebra: to force evaluation of the expression inside the innermost pair of
parentheses, followed by the next innermost pair of parentheses, etc. Try to
work these examples of C expressions and see if you understand both the above
rules:

C expression Equivalent to Answer
a=b=c=2%3-6%2 a=(b=(c=(2%3)-(6%2))) a=—-6,b=—6,c=—6
2475+7%4/7 (24%5)+((7*4)/7) 8
(3+2)*47%(6+3)  ((3+2)*%4)%(6+3) 2

The C language has quite a large number of operators. It also has 15
different levels of precedence. You will be introduced to the operators a few
at a time. When the operator is introduced, a mention will be made of its
precedence and associativity. However, the best habit to get into with long C

- 2] -



Simple 1/0 and Expressions Chapter 2

expressions is to use parentheses to force the order of evaluation.

You now can figure out what happens with operator precedence, but what
happens when you execute the following that has a mixed type expression?

Example 2.4

main() /* Example 2.4 %/
{

int a;

a = 3.4 % 5;

printf(Ma = %Zd \n",a);

b

Is the value of the variable a, seventeen or fifteen? In other words, was
the multiplication performed as integer or floating point? To learn what
happens, let's look at conversion of operands in C expressions.

When two operands in a binary operation are of different types, an
automatic type conversion will occur. To understand the rules of this
conversion process, you must understand that C types have a specific
ordering. The lowest type is char and the highest type is double. The
following table lists lowest type to highest type in a left to right order:

char < int < unsigned < long < float < double

The types of the two operands are compared and the lower type operand is
converted to the higher type. The type of the result is the same as the

higher type operand. 1In particular, the following conversion rules are
applied in the order listed:

1. Any operand of char is converted to int.

2. Any operand of float is converted to double.

3. 1If either operand is double, then convert the other to double.

4. 1If either operand is long, then convert the other to long.

5. 1If either operand is unsigned, then convert the other to unsigned.
Another kind of type conversion takes place when the assignment operator is

used. No matter what type expression appears on the right hand side of the
assignment, the value is converted to the type of what appears on the left

- 22 -



Chapter 2 Simple I/0 and Expressions

hand side. Conversion of float to int truncates the fractional part of the
number and long to int drops the excess high order bits. Integer to character
drops excess high order bits also. Conversions such as these can lead to
unexpected results unless you are aware that they are occurring. The
following example shows some of the conversioms that can take place.

Example 2.5

3%
~

main() /% Example 2.5
{

char c¢l, c2, c¢3;

int il, 12, 13;

float f£1, f2, £3;

long dl;

/* char converts to int */

cl = 'c';

il = ¢l - 'a' + 'A';

c3 = il; /* truncate to character */

printf("cl = %c, 11 = %Zd, c3 = Zc\n", cl,1i1,¢3);

il = 321;

c2 = il * convert integer to char *

c3 =il + 1; /* truncates value *

printf("il = %d, c2 = Zc, ¢3 = Zc\n",
il,c2,c3);

KN
=

/* automatic conversion from int to float

fl = 200; /* converted to float *

£2 = 350 * fl; /* 350 converted to float *
/* 7 converted to float- result truncated */
i3 = 3.4 % 7;

/* 350 converted to float - result truncated */
il = £3 = £f1 / 350;
printf("fl1 = %f, f2 Zf,\n",£1,£2);
printf("i3 = %d, £3 = %f, il = 7Zd\n",
i3,£3,11);
/* values produced in the following
assume a 16 bit integer */
dl = 69631; /* In hex 10FFF */
i2 =dl; /* truncates to OFFF */
printf("i2 = 7Zd\n",12);

>

The output of the program looks like this:

- 23 -



Simple I/0 and Expressions Chapter 2

cl = ¢, il = 67, ¢3 = ¢

il = 321, ¢c2 = A, ¢3 =B

f1 = 200.000000, f2 = 70000.000000),
i3 = 23, £3 = 0.571429, il =0

i2 = 4095

Take a look at this output carefully. In the statement,

il = cl - "a' + 'A';

the two character constants, 'a' and 'A' are converted to integer before the
calculation is performed. You might notice this expression actually is
converting the lowercase letter 'c¢' to uppercase 'C'.

The next part of the program,

il = 321;
c2 = il /* convert integer to char */
c3 =il + 1; /* truncates value */

shows an integer that is truncated to a character. Exactly which letters are
printed as a result is not really important. This example shows that such
conversion is possible. Usually, this occurs as a programming accident.

The next part of Example 2.5,

f1 = 200; /* converted to float */

£2 = 350 * fl; /* 350 converted to float */
/* 7 converted to float- result truncated */
i3 = 3.4 * 7;

/* 350 converted to float - result truncated */
il = £f3 = f1 / 350;

shows some common floating point conversions. Notice that the expression
3.4 * 7 is calculated in double floating point arithmetic and then truncated
when the result is assigned to the integer i3. Also note in the next
expression, the constant 350 is converted to floating point. The variable £3
is assigned the floating point value(0.571429), but when the value is stored
in il, the floating point number is truncated to integer (0).

The conversion of long to int is shown in the following code:

dl
i2

it

69631; /* In hex 10FFF */
di; /* truncates to OFFF */

The exact representation in bits of this example is machine dependent. If
an integer is 16 bits and a long integer is 32 bits in length, then the
variable dl which has the value, 69631, expressed in bits is,

...24_



Chapter 2 Simple I/0 and Expressions

00000000000000010000111111111111, When the value of dl is converted to an
integer, the high order bits are lost. The value of i2 becomes,
0000111111111111, or 4095. Notice that this truncation of bits can drastically
change the value of a variable!

This example justs illustrates some of the rules we've discussed earlier.
What is important to learn from it is that C may do some conversions
automatically during calculations, sometimes making the results not what you
intended.

The assignment and arithmetic operators that you've seen previously have
some shorthand versions. These are known as assignment operators and they
combine one arithmetic operator and the assignment operator, such as +=. For
example, x += 3 is the same as x = x + 3. There are other operators that can
be used in this manner, but the following are the ones you've seen at this
time:

Expression Equivalent
X += 4; X = X + 4;
y == 1; y=y -1
z *= =4 z = z % -4
w /= 23; w=w/ 23;
X %= 2; X =X %4 2;

One restriction applies to the assignment operators. The first operand
must be a variable. For example, the following are not valid C statements:

The increment and decrement operators also require that their operand be a
variable and not a constant. The increment operator is used to add one to the
operand, whereas the decrement operator subtracts one. Both are unary
operators and therefore require only one operand. For example, a++, is

equivalent to a = a+l and a-- is equivalent to a = a-l.

In the statement, bb = aa++;, the value of aa is incremented by one after
assigning the current value of aa to the variable bb. In this case ++ is a
postfix operator, it increments the value of the variable aa after assigning
the current value of the variable aa to the variable bb.

The increment and decrement operators can also be written prior to the
operand. This is known as a prefix operator, the value of aa in this
statement, bb = --aa;, is decremented before the assignment to the variable
bb. The precedence of the increment and decrement operators are higher than
anything you've seen before except the parentheses. For example:

_25_



Simple I/0 and Expressions

The statement: The statement:

b = ¢ + a++; b=c¢ + --a;

is equivalent to: is equivalent to:

b = c+a; a = a+l; a=a-1l; b= c+a;

Chapter 2

This next example will show some assignment operators as well as increment

and decrement operators.

Example 2.6

main() /* Example 2.6 */
{

int xx,ii;

int yy,jj;

jj = ii = 0;

XX = ji++ + ++3];

i

printf("xx = %d, jj = %d, ii

VY = ] %= xx++ + ++ii + 3;
printf("yy = %d, jj = %d, xx =
¥Y,3ii,xx,ii);

ii = ++ii;
printf("ii = %Zd\n",ii);

%d, ii = Zd\n",

Zd\n",xx,jj,ii);

printf("lst --yy = %d, 2nd --yy = %d",--yy,--yy);

Output from Example 2.6

Xx = 2, j3 =2, ii =0

yy = 12, 33 = 12, xx = 3, ii =1
ii = 2

lst -~yy = 11, 2nd --yy = 10

Take time to analyze the output from this example.
has a side effect.

..26...

Every expression shown

That is, the increment/decrement operators change the



Chapter 2 Simple I/0 and Expressions

value of a variable during evaluation of the expression. But when is the
value changed? Let's examine the statement:

XX = ji++ + ++773;

The increment operators have the highest precedence and will therefore be
evaluated first. The left operand of the addition(+) is first evaluated. The
result is the current value of jj, which is zero. But then jj is incremented
to the value one. The right operand of + is then evaluated. The variable jj,
currently equal to one, is incremented to two. This is the result of the
right operand. The result of the left operand (0) is then added to the result
of the right operand (2). The value two is then assigned to xx. After this
statement has finished, jj has the value two and xx has the value two. Also
note the following expression:

yy = jj %= xx++ + ++il + 3;

has five plus signs in a row. You must separate the symbols by blanks to make
clear that you desire a post-incremented xx added to a pre-incremented ii.

The compiler will try to take the longest string of characters that will form
an operator. So, if you wrote +++++, the compiler would see ++, then another
++, followed by a + which is not the desired set of operations.

Now let's summarize what you've learned. This chapter introduced you to
formatted input, symbolic constants, C data types, assignment operators, and
the increment/decrement operators. You also should feel very familiar with C
expressions including those that involve more than one operator and more than
one data type. With this background, you are ready to learn about C control
structures.

- 27 -






Chapter 3

Control Statements

So far, all the functions you've seen use sequential execution. That is,
the function is entered, the statements in the function are executed one by
one from top to bottom, and then the function is exited. But C has control
statements that will let your program determine the flow of control (which
statements will be executed next).

To use C control statements, you first need to learn about conditional
tests. A conditional test is an expression that results in a true or false
value. C has special operators for testing conditions between two operands,
known as relational operators. These operators produce either a non-zero
value or zero, depending on whether the relation tested is true or false. The
relational operators include:

is equal to

I= is not equal to

< less than

> greater than

<{= less than or equal to

o= greater than or equal to

These operators can be used in any C expression. The following are
examples of relational operators.

- 29 -



Control Statements Chapter 3

Example 3.1

main()
{
int a,b,c;
a = 3;
/* b is assigned a non-zero value, true */
b = a==3;
/* ¢ is assigned a zero value, false */
c = al=3;

/* b == c will be false (0) */
printf(" b == ¢ should be zero(false),");
printf(" the value is %d \n",b == ¢);

The statement b = a==3 reads, "Assign the result of the test, is a equal to
three, to the variable b". Consequently, the value of b is non-zero, true.
The value of ¢ in the statement ¢ = a!=3 is zero, because the expression a!=3
is false. 1In the last statement, the expression b == ¢ evaluates to 0 (false)
since b is not equal to c.

Although the relational operators can be used in this way, the most common
usage is in a C control statement. The simplest form of C control statement
is the if statement. The format of the if statement looks like this:

if (expression) /* 1f the expression is true */
statement /* execute this statement */

The C reserve word, if, is followed by an expression enclosed in
parentheses. If the expression results in a value of zero(false), the
statement following the closing parenthesis is skipped. If the result of the
expression is non-zero(true), the statement is executed. The next example
makes use of the if statement and relational operators.

- 30 -



Chapter 3

Example 3.2

main()

{

int birth_yr, cur_yr;
printf("Enter the year of your
scanf("%d",&birth_yr);
if (birth_yr <= 0)

Control Statements

/* Example 3,2 */

birth: ");

printf(" Invalid year entered \n");

printf("Enter the current year:

scanf("%d",&cur_yr);
if (cur_yr <= 0)

ll),
>

printf(" Invalid year entered \n");

printf(" Your current age = %d

>

This example shows you a good way to
statement after the if will be executed
you glance over this source code, it is
conditionally executed.

The else statement provides a way to
execute when the expression of the "if"

\n",cur_yr - birth _yr);

The indented
When

format your C program.
only if the condition is true.
clear which statements are

specify an alternate statement to
is 0 (false). The else statement is

only valid after an if statement and looks like the following:

if (expression)
statement 1
else

statement_2 /* execute,

Specifically, the else statement works like this:
then statement 1 is skipped and statement _2 is

evaluates to zero(false),
executed.

look at this example:

if (a < 99)
b = 3;
else
b = 4;

If the expression is non-zero(true),
statement 1 is executed and statement 2 is sklpped
else are two separate C statements and as such require semlcolons.

/* if expression is true execute this */

if the expression is false*/

If the expression

the opposite occurs,
Also, note that if and
Take a

/* ; required at end of statement */

/* ; required at end of statement */

Due to the semicolon before the else, this syntax(form) perhaps will look a

little strange to PASCAL programmers.

By using the if-else combination, you

- 31 -




Control SEatements Chapter 3

can make Example program 3.2 much nicer. Why? Well currently, an invalid
number can be entered for the birth year, then an error message is printed out
and the program continues by asking for the current year. The program
proceeds to calculate an age with the invalid input. By using the else
statement, you can prevent the invalid calculation from happening. Take a
look:

Example 3.3

main() /% Example 3.3 */
{

int birth_yr, cur yr;

printf("Enter the year of your birth: ");
scanf("%d" ,&birth yr);
if (birth yr <= 0)
printf(" Invalid year entered \n");
else {
printf("Enter the current year: ");
scanf("%d",&cur_yr);
if (cur yr <= 0 )
printf(" Invalid year entered \n');
else printf(" Your current age = %Zd \n",
cur_yr - birth yr);

by

The above example also illustrates the usage of the compound statement with
the else statement. Any C statements between the left brace, '"{", and the
right brace, "}", are treated as if they were one C statement(remember the
definition of a block?). Now the calculation for age is performed only if
both dates are valid (greater than zero).

Next, let's look at the simplest C control loop, the while statement. The
format of this statement is as follows:

while(expression)
statement

The while reserve word must be followed by a parenthesized expression, just
like the if statement. This while loop works by executing the statement over
and over as long as the expression is true (non-zero). When the expression
being tested is false (0), the statement is skipped and execution starts at
the first statement following the while loop. The statement can be a simple C
statement or a compound C statement enclosed by braces, {}.

Before taking a look at an example of the while loop, let's look at how to

- 32 -



Chapter 3 Control Statements

initialize variables in declarations. A variable name may be followed by an
equal sign and an initial value in a declaration. Variables are initialized
to the constant value specified each time the function is entered. Later, you
will see initialization of other data types. The following example contains
initializers for the variables result and counter.

Example 3.4

main() /* Example 3.4 */

{
/* vy */
/* calculate X %/
/% */
/* where x and y are integers and y >= 0 */

int base, power;
long result = 1;
int counter = 0;

printf("Enter the base number : '");
scanf("%d",&base);

printf("Enter the nth power to '");
printf("which base will be raised:");
scanf("%d", &power);

while (counter++ < power)
result = result * base;

printf(""The base of %d raised to',base);
printf('" the %dth power is %Z1d\n",
power,result);

In example 3.4, after you enter the base and power, the loop condition for
the while is tested. While counter is less than power, the next statement is
executed. Notice this example uses the post increment operator which you have
seen before. After the loop condition is tested, the counter is incremented
by one. Next, the variable result is multiplied by the base number. When the
variable counter is equivalent to power the while loop is terminated and the
final printf statement is executed.

Any of the C control statements can be used as the statement part of
another control statement. In other words, an if statement can have another
if statement as the part executed when the conditional expression is true.
This is known as nesting the control statements. However, you must be careful
to construct the expressions and statements so that the program does exactly
what you expect.

- 33 -~



Control Statements Chapter 3

Every else statement must be matched with a preceding if statement. When
if-else statements are nested, the compiler assumes that the else statement is
associated with the nearest unmatched if statement. Sometimes this makes your
program behave in a way that you didn't intend. Consider the following
examples. The intent is to assign the variable, result, with a value that is
based on the value of the variable num such that:

result = 0 if num <= 0
result 1 if 0 < num < 1000
result 2 1f num >= 1000

]

it

Nesting Examples

main()
{ int result=2,num;

main()
{ int result=2,num;

printf("Enter the number : '"); printf("Enter the number : ");
scanf("%d",&num) ; scanf("%d", &num) ;
if (num > 0) if (num > 0)
result = 1; result = 1;
else else ; /*null statement®/
result = 0; else

result = 0;

/*result = 0 only if num < 0%/
b

l

|

|

|

|
if (num < 1000 I if (num < 1000)

f

l

|

f

/*result = 0 if num >= 1000%/ |

|

by

If you examine the code on the left, the variable result is set to 0 when
num is greater than or equal to 1000. However, in the case on the right,
result is set to 0 when num is equal to or less than zero. The program on the
left is not correct because the else statement is matched with the second if
statement. This happens even though the code was indented to show the else to
match the first if statement. In the program on the right, an extra else
statement was inserted to match the second if, so this program would execute
as intended.

Instead of using the null statement after the else in the right hand
example, you could use braces to clarify the nesting of the statements. This
tells the compiler to treat all the C statements inside the braces as one
statement. The else statement is then matched with the first if. The nesting
example using braces would look like this:

- 34 -



Chapter 3 Control Statements

Nesting using braces

if (num > 0) {
if (num < 1000)
result = 1;
3

else result = 0;

When testing two values for equality, watch out for the accidental use of
equal (=) operator instead of the relational equality (==) operator. A while
loop, in particular, may never terminate if the expression being tested has
this problem. Take the next example and change the equality operator to an
equal operator and see what happens.

Example 3.5

main() /% Example 3.5 */
{
int sum = 0;
int number, ok = 1;
/* while never terminates if expression
is ok = 1 %/
while (ok == 1) ¢
printf("Enter a number to sum");
printf('"(zero will terminate): ");
scanf("%d", &number) ;
if (number == 0) ok = 0;
else sum = sum + number;
)
printf('"The total sum is %d\n",sum);

>

Do you see why the loop never terminates if the while expression is
ok = 1?7 Even if the variable ok has been changed to zero inside the while
loop, the result of the expression, ok = 1, is always non-zero(true).
Consequently, the loop will never terminate.

Also notice in this example that the declaration for the variables number
and ok has an initializer. This initializes the variable ok to 1. The

variable number does not have an initial value.

Frequently you would like to test the results of evaluating two or more

- 35 -



Control Statements Chapter 3

relational operators. For example, is the variable aa equal to one and the
variable bb less than two? The and operator (&&) and the or operator(|])
which are known as logical operators accomplish this. The && (and) operator
is true only if both operands are true (nmot equal to zero). The || (or)
operator is true if either one or both of the operands is true., Here's a list
of how these operators work:

operand 1 operand 2 result of operation
true && true true
true && false false && (and) operator
false && true false
false && false false
operand 1 operand 2 result of operation
true F true true
true I false true [l (or) operator
false || true true
false || false false

Some examples of logical expressions:

/* 1s age greater than 5 AND less than 187 */
age > 5 && age < 18

/* is ¢ a lower case OR an upper case letter? */
(¢ >= 'a' §& c <= "z") || (c >= "A' && ¢c <= '2")

The logical operators && and || are binary operators and therefore require
two operands. However, the ! operator (not) is a unary operator and only
requires one operand. It yields a non-zero (true) result when the operand is
false and a zero (false) when the operand is true. Look carefully at these
examples of the not operator because the results can be confusing:

!z /* true if z is false, equivalent to z == 0 */
laa == 0 /% true if aa is true, a non-zero */
The logical and relational operators can be combined in a single

expression. When combining relational and logical operators, the relational
operators have the highest precedence and the && operator has precedence over

- 36 -



Chapter 3 Control Statements

the ||. Be sure to check the rules of precedence or use parentheses 1if you are
unsure which operation will be done first. Some expressions that are
equivalent follow:

expression equivalent
a == 'l ¢ ¢ d (a==b) || (c < &)
bb > cc && dd == aall|cc<=aa ((bb>cc) && (dd==aa)) || (cc <= aa)

The most common usage of logical operators is in conditional tests. The
following example shows a logical expression that tests for alphabetic
characters.

Example 3.6

main() /* Example 3.6%/
{

char in = 'a';

printf("Test for upper or lowercase letters,');
printf(" terminate on non-alpha\n');
while((in <= 'z' && in >= 'a') ||
(in <= 'Z'" && in >= 'A") )
printf("Enter a character and");
printf(" press the enter key: '");
scanf("%cZ*c",&1in);
printf('"Character read is %c\n'",in);
b
printf("Program Terminated ~ ");
printf('"non-alphabetic character entered\n");

>

The test for alphabetic characters in the while loop expression is
equivalent to the C library function isalpha. Notice the conversion
specification used to read in each character. It looks like this: %cZ*c. This
specification uses the suppression character, * to specify skipping over the
next character. On each call to scanf two characters are read. The first is
stored in variable in, while the second is discarded. If you did not add the
%4%c to the specification string, then the carriage return would be read as an
input character. This would cause an early termination of the while loop.

In writing loops, you frequently want to execute the loop for a
predetermined number of times. To do this you would specify an initial value
for the loop counter, a test expression to determine when the loop is done,
and an increment or decrement for the loop counter to be applied at the end of
the loop. Conveniently, C has a loop construct that will let you specify any
or all of these three things. This is C's for loop. The format of the for

- 37 -



Control Statements Chapter 3

statement looks like this:

for ( expressionl ; expression? ; expression3)
statement /* can be compound */

The first expression is used to initialize the loop counter variable. The
second expression is the terminating condition test. The third expression is
used to modify the loop counter. The for statement is also equivalent to the
following C code:

expressionl; /* initialize counter */
while(expression2) { /* test counter value */
statement; /% can be compound */
expression3; /* modify counter value */
b

Notice that the three parts of the for loop are separated by semicolons in
this next example. It shows the for loop being used to sum five numbers.

Example 3.7

main() /* Example 3.7 */
{
int sum, count, num;
printf("This program sums 5 integer numbers \n");

sum = 0}
for (count=0; count < 5; count++) {
printf("Enter a number : ");

scanf("%d",&num) ;
sum += num;
}

printf('"Total of the five numbers = %d\n",sum);

The variable count is initialized to zero, then count is compared to five.
If count is less than 5 then the compound statement of the for loop is
executed. Finally, the count is incremented and the test performed again.
After the five numbers have been entered, the sum is printed out and the
program ends. Notice that the first expression of the for, count=0, is
executed only once.

Sometimes it would be nice to initialize two variables in the first
expression of the for statement. This is accomplished using the comma
operator. This operator takes two expressions and makes them appear as one to
the compiler. The next example will show this operator.

- 38 -~



Chapter 3 Control Statements

The for statement, like the while statement, can be nested inside of other
loops. Combined with the comma operator and nesting, the for statement can be
a very powerful comstruct. Take a look at the example 3.7 again and see what
it looks like with a comma operator in the initializer expression and with an
extra outside loop added.

Example 3.8

#define TRUE 1

main() /* Example 3.8 */

{
int sum, count, num; /* declarations */
int go = TRUE;

printf("This program sums 5 integer numbers \n');
/* initialize go so that we fall through loop at least once */

while (go) ¢
for (sum = 0,count=0 ; count < 5; count++) {
printf("Enter a number : '");
scanf("%d",&num) ;
sum += num;
}
printf("Total of the five numbers = %d\n", sum);
printf(
""Do you have any more sets of 5 numbers to sum?\n'");
printf("Enter 1 for yes and 0 for no: ");
scanf("%d", &go);

Be sure to note that the variable go must be initialized before it is used
inside the while test. Otherwise, the program will not work properly.

There is ome C looping structure you haven't seen, the do-while. This loop
contains a conditional expression at the end of the body of the loop. This
means that even if the conditional expression is false, the loop is executed
at least once. The format of this statement is:

do /* execute */
statement /* this statement */
while (expression) /* while this expression is true */

The following is Example 3.8, written using a do-while loop. Notice that
you no longer have to make sure the variable go is initialized so that the
loop is executed the first time.

- 39 -



Control Statements Chapter 3

Example 3.9

main() /* Example 3.9 */
{

int sum, count, num;

int go;

printf(""This program sums 5 integer numbers \n');

do {

for (sum = 0,count=0 ; count < 5; count++) {
printf("Enter a number : ");

scanf("%d",&num);
sum += num;
by
printf("Total of the five numbers = %d\n", sum);
printf(""Do you have any more sets of 5'");
printf(" numbers to sum?\n");
printf("Enter 1 for yes and 0 for no\n");
scanf("%d",&go);
y while (go);
>

You now should be familiar with the C control statements, if, while, and
for. Also, you are hopefully able to write test conditions for these control
statements using both logical and relational operators, in addition to using
the arithmetic operators introduced earlier. 1In the next chapter, you will
learn about C functions and then a few more operators will be introduced.

- 40 -



Chapter 4

Functions

In the previous chapters, you learned enough C to begin writing interesting
functions. In this chapter, you will learn more about functions and how to
write them. To start with, let's look at how the function call effects the
flow of control in a C program.

When a function is called, the flow of control passes to the called
function. Execution starts at the first statement in the function and
continues until the function ends or until a return statement is encountered.
The control of the program is then returned back to the calling function.
Execution in the calling function resumes at the statement following the
function call. The following example uses two functions in additiomn to the
function main.

Example 4.1

main()
{ int Score, Avg Score, No_of Students;
long Total Score;
prompt1();
No_of Students = 0;
Total Score = 0;

prompt2();
scanf("%d", &Score);
while (Score != -1) {

Total Score = Total Score + Score;

++No_of Students;

prompt2();

scanf("%d", &Score);
>
printf("You Entered Scores for %d Students.\n", No_of Students);
If (No_of Students > 0) {

Avg Score = Total_Score/No_ofwstudents;

printf("Average Score was %d.", Avg_Score);

- 41 -



Functions Chapter 4

promptl1()

{
Printf('*¥** Program to Compute Average Test Score ***\n');
Print£(" A Test Score of -1 Terminates Input\n');

>

prompt2 ()

{
printf("Enter Test Score: ");

b

This example reads integer values and prints four values per line. After
six lines are output, a new heading and the next set of values are printed.
The functions newline and newset do not require any arguments and they do not
return any defined values.

A C function call is an expression that results in the value returned by
the called function. You can call a function from any place that an
expression is legal. The following C code segments show some examples:

call it(); /* discard function result */
result = call it(); /* save function result */
while (result = call_it()); /* call until 0 is returned¥/
if (a == (result = call_it())) /* compare a to the result */

These examples require some further explanation. The first statement is a
simple function call. The value it returns is discarded. However, in the
second statement, the value returned by call_it is saved in the variable
result. The third statement not only saves the variable result, it uses the
value of result as the while statement conditional expression. The last
statement assigns the returned value of the function call to result, then
tests to see if that value is equal to the variable a.

The value returned by a function is defined by the return statement. It
has the following form:

return ( expression );

Execution of this statement returns control back to the calling function
and the value of the expression is the value returned. The expression is
optional. A return statement by itself will return an undefined value. If no
return statement is present in a function, then control is returned to the
caller when the closing right brace of the function is reached. In this case,
the value returned is also undefined.

To pass values into a function, arguments are used. You've seen how values
are passed in as arguments. What you need to know now is how to define a

...42..



Chapter 4 Functions

function with arguments. All argument declarations are specified after the
function header and before the body of the function.

Here is the standard C library function, isalpha:

isalpha(c) /* returns 1 if ¢ is a letter */
int c; /* else returns 0 */
{
if (¢ >= 'a' & ¢c <= "z' || ¢ >= 'A' && ¢ <= 'Z') return l;

else return 0;

Notice the declaration for the argument c before the first left brace.
This declaration is not required because the argument's type defaults to
integer. However, it is a good practice to put in argument declarations so
that you will not forget them when the arguments are non-integer. Also take a
look at the return statements inside the isalpha function. The return
statements define the values that are returned to the caller.

Now let's look at how the control of execution is passed from function to
function. Example 4.2 shows this change of execution control. Each function
in this example will be discussed separately. Then the complete listing will
be shown so that you can try it on your computer.

Main function

main() /* This starts example 4.2 */

{

int i,sq,cu;

printf("This function prints the square");
printf(" and the cube of a number\n");
printf("Enter the number now: ");
scanf("%d",&1);
printf("\nThe value entered
sq = square(i);
printf("\nThe value squared
cu = cube(i);
printf£("\nThe value cubed

%Zd\n",i);

Zd\n",sq);

Zd\n'", cu);

The first function is the main function. It calls the square and cube
functions (besides printf to print the values returned). Later you will see
in the definition of square, a value is returned. The main function stores
the values returned from square as well as cube, even though C does not
require you to utilize or store the value returned from a function.

- 43 -



Functions Chapter 4

Square function

square(ii)
int ii;
{
return(ii * 1ii);

by

The square function returns the square of the value passed as the
argument. The squared value is not stored in a local variable. It is passed
directly back to the calling function using the return statement.

Cube function

cube(iii)
int 1ii;

{
b

return(iii * square(iii));

The cube function returns the cube of the passed argument. This result is
calculated by getting the square of the argument and multiplying. Notice, the
square function has been called from this function as well as from the main
function. Any C function may call any other C function. Now take a look at
this example listed altogether.

- 44 -



Chapter 4 Functions

Example 4.2

/* This is a complete listing of example 4.2 */
main()

{

int i,sq,cu;

printf("This function prints the square');
printf(" and the cube of a number\n'");
printf("Enter the number now: '");
scanf("%d",&1);
printf("'\nThe value entered
sq = square(i);
printf("\nThe value squared
cu = cube(i);

printf("\nThe value cubed = Zd\n",cu);

%d\n'",1);

%Zd\n",sq);

b

square(ii)
int 1ii;
{
return(ii * ii);

b

cube(iii)
int iii;
{
return(iii * square(iii));

by

Program Qutput from Example 4.2

This function prints the square and the cube of a number
Enter the number now: 13

The value entered 13

The value squared 169
The value cubed = 2197

Take a look at the above output from this program and see if you can trace

- 45 -



Functions Chapter 4

the flow of control. Notice that the main function calls the function cube
that in turn calls the function square. The value returned by square is then
used in the calculation of the value to be returned by cube.

The functions in Example 4.2 all return values of type int. The function
header "square()" is equivalent to "int square()". A function can be defined
to return a value of some other type by preceding the function name with a
type keyword. For example:

double sin(angle) (...} /* double precision result */

/* The declaration is read as "the function sin
returning type double'".*/

long bignum(x) { ...... } /* long integer result %/

/* The declaration is read as 'the function bignum
returning type long". */

When the arguments passed to a function are not integer, they must be
declared before the body of the function. Now look at these examples of
function headers and argument declarations.

double cos(angle) /* function returning double */
double angle; /% argument passed is double */
{...2
int putdbl(value) /* function returning int */
double value; /* argument passed is double */
(o)

The conversion rules for expressions you saw earlier also apply to the
arguments passed to a function. Char type operands are converted to int and
floating point operands are converted to double at the time of the function
call. Therefore, the arguments of a function should never be declared as type
char or float. You should instead use int or double. Otherwise, you will get
unexpected results.

A function returns a value of the type specified in the function header.
Even if the expression of a return statement is a different type, the value is
converted to the correct type before being returned. The following is an
example of a definition of a double precision function:

double cir_area(radius)
double radius;

{

return(3.14159 * radius * radius);

by

- 46 -



Chapter 4 Functions

You now have a function declared that returns a value of type double, but
to use this function more has to be donme. Recall that a function is assumed to
be "function returning int'". You now have to tell the function that calls
cir_area that the value returned is of the type double. This is accomplished
with a declaration like the following:

double cir_area(); /* function returning double */

Every function that uses cir_area must contain the above declaration. This
tells the calling function that the value returned is double. A common C
programming error is to forget such declarations, leaving the compiler to
assume that cir_area returns an integer. This will usually cause an abnormal
termination of the program. It is a very good practice to declare all
functions used so that these problems do not occur. The next example shows
the definition and declaration of the function cir_area which calculates the
area of a circle. Notice in the declarations that the types agree.

Example 4.3

/* Example 4.3 */
double cir_area(radius) /* function definition */
double radius;

{
return(3.14159 * radius * radius);

>

main()

{
double cir_area(); /* function declaration */
double radius;
double area;
printf("This program calculates the');
printf(" area of a circle\n");
printf("Enter the radius of the circle: ");
scanf("%1£f",&radius);
area = cir area(radius);
printf(" The area = %f ", area);

b

One thing you should note, this example uses the conversion specification
of %1f to read the double precision variable, radius. Without the correct
conversion specification, the value of radius would have been unpredictable.

There is a special C type that has not been covered, the type void. It is
used to declare functions that do not return a value. This tells the compiler
not to reserve any space for a function result and to ignore any values
produced by return statements. The type void is used just like any other

- 47 -



Functions Chapter 4

function returning a type other than integer. The function must be declared
as void in both the header of the definition and in the declarations of any
function that references it. The following program illustrates the use of
type void.

Example 4.4

f#define TRUE 1
main() /* Example 4.4 */
{
/* print a number in one of several formats */
int go = TRUE, type,dnum;
float fnum;
void fltout(), intout();

printf("Print a number as ');
printf("binary or hexadecimal\n'");
while(go) {
printf("Is your number floating point ?\n");
printf("Enter 0 for no, ");
printf("anything else for yes: '");
scanf("%d",&type);
if(type) {
printf("Enter your floating number: ");
scanf("Zf",&fnum);
fltout(fnum);

)2
else {
printf("Enter your integer number : ");
scanf("%d", &dnum);
intout(dnum, 'D');
intout(dnum, 'B');
intout(dnum, 'H');
)

printf("Do you wish to enter another number?\n");
printf("Enter 0 for no, anything else for yes\n'");
scanf("%d",&go);
b

b

void fltout(dnum)
double dnum;

{
float fnum;
printf("\nFloating Point number: %f\n",dnum);
printf("in e format: %e\n'",dnum);

b

- 48 -



Chapter 4 Functions

void intout(inum,type)
int inum,type;

{
void binary();
if (inum < 0) <
printf("Only positive numbers accepted\n");
inum = - inum;
)
if (type == 'B') (
printf("Binary: ");
binary(inum);
printf("\n");
>
else if (type == 'H')
printf("Hex: Z%x\n",inum);
else
printf("Decimal: %d\n",inum);
b

void binary(inum)
int inum;
{
if (inum > 1) binary(inum/2);
printf("%d",inum%2);
>

In the main function of this example, notice that the functions, fltout and
intout, are declared to be of type void. This declaration is required since
both functions are defined as type void.

Also notice that in the function fltout, the argument dnum is declared to
be double. The argument fnum passed to it from main is a float. Do you
remember that C automatically converts float in an expression to double? The
usage of fnum as an argument is an expression. Therefore it is converted to
double. The argument in fltout must be declared double for it to behave
correctly.

You'll see a similar situation in the function intout. In the main
function, intout's second argument is a character constant. However, in the
definition of intout the second argument is declared to be integer. Recall
that any character operand in an expression is converted to integer. Also
take note of the fact that intout also has to declare the function binary as

type void.

The function fltout uses a new conversion specification, %Ze. This
specification is just a different way of printing out a floating point
number. What is printed is the floating point number in scientific notation
(a number times a power of ten). Also used is the conversion specification,
%x. It is used to print an integer as an unsigned hexadecimal number.

- 49 -



Functions Chapter 4

You have now covered most of the basic control structures and data types of
C. You should feel comfortable with all the topics covered up to this point.
If not, please review the material presented. More sophisticated programming
techniques and data structures will be covered in the next chapters and these
topics by necessity build on the basic information already presented.

- 50 -



Chapter 5

More I/0 and Control Statements

You are now ready to learn about character I/0O and some other control
structures. In order to fully comprehend character I/0, you will need to
learn about C include files. Then you will be introduced at various times to
the definitions that are included from the standard header file, stdio. 'The
standard header file must be included if your program performs input or output
using any functions other than scanf or printf.

The #include statement allows us to include in our program, C source from
another file. The # must be followed immediately by the word include. Next
is the file name enclosed by " " (double quotes). The format of this
statement is:

#include "filename" /* valid file on your system */

The filename must be the proper syntax for the system on which you are
running. See the Systems Implementation Manual for details. When the
compiler sees the #include statement, it suspends compiling in the current
file and starts compiling source from the included file. When the included
file has been compiled, the compiler continues compiling at the statement
following the #include. The file included can also contain #include
statements.

To set up this example of multiple include statements you will have to put
the following sections of code in separate files and name the files in the
proper syntax for the operating system you are using. The example will use
FILEl and FILE2. Enter this first section as FILEL:

FILE]

. */
/% common preprocessor definitions from FILEl */

#define FALSE 0

#define TRUE 1

#define YES 1

#define NULL '\O'

#define ALL 1

And this second section needs to be in FILEZ2:

- 51 -



More 1/0 and Control Statements Chapter 5

FILE2
T */

/* common declarations from FILE2 */
int one,two,three;

char a,b,c;

float fltl,flt2;

This is the main function that will include the previous files:

Example 5.1

#include "FILEL"

main()

{
#include "FILE2"
a = 'al;
one = 1;

fltl = 3.567;
printf("This example shows include files only\n");

)

Take a look at the compilation listing from this example. You will see all
three files. The include feature is very handy for automatically adding a set
of declarations to every compile you do. 1In fact, most C programmers will
place a #include for the standard header file in every C compilation,
regardless of whether the definitions are needed.

Now, let's look at the character I/0 functions. Recall that a C program
automatically opens three files: stdin, stdout, and stderr. The scanf and
printf functions introduced earlier used the file stdin and stdout by
default. You will now learn about the standard functioms, getc and putc,
which require you to specify the file name to be used.

The function getc returns one character from the file specified as the
argument. Right now the only file you know how to access for input is stdin.
The call to getc looks like the following:

onechar = getc(stdin);

If the file has no more characters, the special value, EOF (end of file) is
returned. This value is system dependent and is defined as a symbolic
constant in the standard header file supplied with your system. The result of
the function call, getc, should be checked in order to detect if EOF was

returned or your program could get unexpected results.

The function to output a character is putc. Its arguments are the

- 52 -



Chapter 5 More I/0 and Control Statements

character and the file to which the character will be sent. Stdout and stderr
are the only two files that you know about right now for output. Later you
will learn how to open, close and manipulate other files. When you use a putc
function call, it looks like this:

putc(c,stdout);

The variables stdout, stdin, and stderr are addresses that are defined in
the standard header file, stdio. They are really pointers to the files.
However, this tutorial has not yet covered how to declare pointers, so for
right now think of them just as symbolic constants. The following is a simple

file copy program using getc and putc:

Example 5.2

#include "stdio" /* standard header */
main () /* Example 5.2 */
{

/* this program reads characters
prog
from stdin and writes them
to stdout *

int charin;

/* See the Systems Implementation Manual for how
to generate EOF from the keyboard */

while ( (charin = getc(stdin)) != EOF )
putc{charin, stdout);

>

When this program runs, it will read characters from the keyboard and
output them to the screen. You may also redirect stdin and stdout to other
devices or to a disk file as mentioned earlier in the tutorial. The character
you type will be displayed once as an echo and once as an output from putc.
Consequently, each line of input will be displayed twice. Consider the
following example:

abc

abc

jklm

jklm

This is being entered
This is being entered
~Z

- 53 -



More I/0 and Control Statements Chapter 5

The first line is the characters you entered followed by a carriage return
(generated by an enter or return key). The second line was printed by the
putc function. THe character you must enter at the keyboard for EOF is system
dependent. It is shown in this example as control-Z, "“Z. Please check the
Systems Implementation Manual for which ASCII character is used for EOF.

The most commonly used character I/O functions are getchar and putchar.
Getchar inputs a character from stdin and putchar outputs a character to
stdout. The way they are called looks like this:

onechar = getchar();
putchar (onechar);

Anytime getchar or putchar is used, the standard header file must be
included in the compilation. The compiler actually substitutes calls to the
functions, getc and putc, when getchar and putchar are used. This is
accomplished by something called macros. These will be covered in the
tutorial later. These macros are defined in the standard header file. Now,
lets see example 5.2 using getchar and putchar:

Example 5.3

#include "'stdio" /* standard header */
main () /* Example 5.3 */
{

/* this program copies a file from stdin to stdout */
int charin;

while ( (charin = getchar()) != EOF )
putchar(charin);

b

This program is equivalent to the previous version. Notice that the
include statement is required because the definitions for getchar and putchar
are in the standard header file. Another thing to note about this example is
the declaration of charin as an int, rather than char. The variable charin
holds the character read by the function getchar. The getchar function
actually returns a value of type int. If you declare charin as char, the
value returned from getchar will be truncated according to the conversion
rules discussed earlier. The result is that the character variable's value is
always positive. This will not properly compare to EOF, a negative value.
Thus, this conversion will cause the program to loop indefinitely. To avoid
problems like this, always declare a variable as integer if it is to hold the
value returned by getchar or getc.

Now you're ready to take a look at some of C's other control statements.
y y

- 54 -



Chapter 5 More I/0 and Control Statements

In using C control statements,. sometimes you will want to end the looping
before the normal loop termination. One way to do this is using the break
statement. This causes a jump to the end of whatever C loop is currently
being executed.

The break statement can be used in a while, do-while, or for statement. In
all cases, it terminates the loop. If the break statement is inside nested
loops, it applies only to the most immediately enclosing loop. Take a look at
this program to count occurrences of digits, alphabetic characters, and
whitespace.

Example 5.4a

#include "stdio"

main() /% Example 5.4a */
{

int count = 0,charin;

int digit = 0,other = 0;

int alpha = 0,space = 0;

printf('"\nThis program will count ");
printf("occurrences of digits,\n");
printf("alphabetic characters, and whitespace\n");
printf("Enter EOF to terminate the program\n");
printf('"Reading input.......\n");
for(count=0; ;++count) {

charin = getchar();

if (isalpha(charin)) alpha++;

else if (isdigit(charin)) digit++;

else if (isspace(charin)) space++;

else if (charin == EQF) break;

else other++;
}
printf("\nSUMMARY\n");
printf("\nThere were %d digits entered\n',digit);
printf("Along with %d alphabetic characters,\n'",alpha);
printf(" %d whitespace characters,\n", space);
printf("and %d other characters.\n'",other);
printf("For a total of %d characters read.\n'",count);

>

This example shows the use of a break statement. The for loop termination
expression is null (permanently false). On each iteration of the loop, this
expression is tested for a true value, but the result is always false. The
loop is terminated only by entering the EOF character which causes the break
statement to be executed. When this happens, the summary is printed.

This example also makes use of three functions from the standard library,

- 55 -



More I/0 and Control Statements Chapter 5

isalpha, isdigit and isspace. These functions all perform character tests.
Isalpha returns non-zero(TRUE) if the character is alphabetic. Likewise,
isdigit returns non-zero(TRUE) if the character is a digit and isspace returns
non-zero if the character is a blank, tab or newline('\n'). All three
functions return a zero(FALSE), if the test fails.

Another way of changing the flow of control is to use the goto statement.
In order to use the goto statement you must have a labeled statement. Then,
the goto statement can branch to that label.

The label is a C identifier followed by a colon. It may appear by itself
or on the same line as another C statement. If the label appears by itself on

a line, the very next C statement is the one which is labeled.

An example of the format of these statements can be seen here:

Example 5.4b

#include "stdio"
main() /* Example 5.4b */
{

int count = 0,charin;
int digit = 0,other = 0;
int alpha = 0,space 0;

[
]

printf("\nThis program will count ');
printf("occurrences of digits,\n");
printf("alphabetic characters, and whitespace\n');
printf("Enter EOF to terminate the program\n');
printf("Reading input.......\n");
for(count=0; ;++count) {

charin = getchar();

if (isalpha(charin)) alphat++;

else if (isdigit(charin)) digit++;

else if (isspace(charin)) space++;

else if (charin == EOF) goto summarize;

else other++;
b2

summarize:

printf("\nSUMMARY\n");
printf("\nThere were %d digits entered\n",digit);
printf("Along with %d alphabetic characters,\n",alpha);
printf(" %d whitespace characters,\n",space);
printf("and %d other characters.\n'",other);
printf("For a total of %d characters read.\n",count);

- 56 -



Chapter 5 More I/0 and Control Statements

Note this program will behave exactly like example 5.4a. The break
statement in Example 5.4 is equivalent to executing a goto summarize;. This
is the only example you will see in the tutorial of the goto statement. You
will find C's control structures expressive enough that goto statements will
be unnecessary. The labeled statement will be seen again shortly in the
discussion of the switch statement.

In C you can also continue the next iteration of a loop. This is
accomplished by the continue statement. It is similar to the break statement
in that it causes a jump in the execution of the loop. It looks like this:

continue;

While the break statement terminates a loop, a continue statement continues
the loop at the next iteration. In the while and do-while loops, execution
continues at the conditional expression for the loop. In a for loop,
execution continues at the third expression of the for. 1In the previous
example, the third expression of the for is ++count.

The following example illustrates the use of the continue statement. The

program reads characters from stdin, converts all tab characters to a sequence
of eight blanks, and writes the characters to stdout.

Example 5.5

#define TAB 8 /* Example 5.5 */

#include "stdio"

main ()

{ /* Convert tab characters to blanks */
int c,i; /* The tab character is generated

from the keyboard by <CTRL I> */
while((c = getchar()) != EOF) {
if (¢ == "\t") {
for ( i = 0; i < TAB; i++) putchar(' ');
continue;

)
putchar(c);

by

In the previous program, '\t' represents the tab character. Each time a
tab character is read, the for loop outputs eight blank characters and then
the continue statement causes a branch back to the while expression. For tab
characters, the statement putchar(c); is not executed.

Now take a look at the C conditional expression operator, ? :. It operates
like the if-else pair of C statements. This operator is the only C operator

- 57 -



More I/0 and Control Statements Chapter 5

that requires three operands. The first operand is the conditional test
expression. If this expression is true, then the second expression 1is
evaluated, otherwise the third expression is evaluated. This operator changes
the flow of control just like the if-else statements do. But, it is an
expression and as such, it generates a value which can be used like any other
expression value. The following is a simple example:

printf(" The largest number is %d\n",(adb) ? a : b);

This is equivalent to the following....

if (a>b)

printf("The largest number is %Zd\n",a);
else

printf("The largest number is %d\n",b);

As you can see, the statements using the ? : operator can be written in a
lot less space. The following example uses the ? : operator

Example 5.6

main () /* Example 5.6 */
{

int largest, il, i2;

printf("Enter 2 integer numbers: ');
scanf("%d%d",&il,812);

largest = il > i2 7 il : i2;

printf(""The largest number is %d",largest);

b

This example uses the ? : operator to set the variable largest to the
correct value. The second and third expressions used with the ? : operator do
not have to be simple variables such as il or i2, but can be complex
expressions. However, with more complex expressions you should use
parentheses to make the parts of the ? : operator clearer.

The last topic to be covered in this chapter is the most sophisticated of
all the control structures, the switch statement. It is a way to transfer
control like a series of if-else statements, except it uses only one test
expression.

Now, let's find out how a switch statement could replace a series of
if-else statements. The switch statement has an expression to evaluate. The
result of the expression is compared to the constant values specified in case
labels. These case labels specify where to start executing if a match is
made. There can be a default label, to specify where to go if none of the

- 58 -



Chapter 5 More I/0 and Control Statements

other cases is matched. The format of the switch statement looks like the
following:

switch(expression) {
case label 1: statement;
statement;
case label 2: statement;
statement;
case label n: statement;
statement;
default: statement;
statement;

. . .

>

The case label must be a constant of any basic data type except float or
double. When the switch statement matches the value of the expression and a
case label, the flow of control is transferred to the statement following the
matching label. When there is no match and no default label is specified,
then the statement following the switch statement is executed, thereby
skipping all statements associated with the case labels. Let's take a look at
an example using a switch statement.

Example 5.7

#include "stdio"
main() /* Example 5.7 */
{
int digit = 0, other = 0, space = 0;
int charin;

printf("\nThis program will count ");

printf("occurrences of digits,\n'");

printf("whitespace and other characters\n");

printf("Enter EOF to terminate the program\n");

printf("Reading input ..........\n");

while((charin = getchar()) != EOF)
switch(charin) ¢

case '0':
case '1':
case '2':
case '3':
case '4':
case '5':

- 59 -



More I/0 and Control Statements Chapter 5

case '6':
case '7':
case '8':
case '9': digit++;
break; /* exit switch */
case '\t':
case '"\n':
case ' ': space++;
break; /* exit switch */
default: other++;
break; /* exit switch */

>
print£("\n\n SUMMARY\n");
printf("There were %d digits entered\n", digit);
printf("Along with %d whitespace characters\n",
space);
printf(" and %Zd other characters.\n',other);

}

In this example, multiple case labels are used to cause transfer to the
same statement (i.e. if a digit is read, then the variable digit is
incremented). Note that the break statement is used after each of the
counters. Before, you saw that the break statement could be used to terminate
a loop. The break statement may also be used to branch out of a switch
statement. 1In the example, the switch statement is inside a while loop.
However, the break statements are inside the switch statement. Therefore,
they have no effect on the while loop. The break statement, inside a switch
statement, causes a branch to the end of the switch statement. They are
necessary in the previous example. Otherwise, you would have all three
variables incremented when a digit is read, and the last two variables
incremented when a whitespace character is read.

The following example further illustrates the use of the switch statement.

Example 5.8

#define DAYPHCORR 10; /* Example 5.8 */
f#define LENCYCLE 28.3;

main() /* Same as Pascal tutorial 6.2 */

{

int daynumber, intphase;
int startphase, phase, month, day, year;
double realphase, phasecorrection;

printf('" *%* Lunar Phase calculation program *¥%¥\n");
printf(" Enter the month, day, aund year:");
scanf("%d,%d,%d ",&month,&day,&year);

startphase = ((year - 78) * 365) + DAYPHCORR;

- 60 -



Chapter 5

switch(month) ¢

case 1: daynumber =
break;

case 2: daynumber =
break;

case 3: daynumber =
break;

case 4: daynumber =
break;

case 5: daynumber =
break;

case 6: daynumber =
break;

case 7: daynumber =
break;

case 8: daynumber =
break;

case 9: daynumber =
break;

case 10: daynumber
break;

case 11: daynumber
break;

case 12: daynumber
break;

startphase += daynumber +

realphase =
intphase = realphase;
realphase —= intphase;
phase = realphase * LENCYC
switch (phase){
case 1: case 2: case 3:
printf£("The moon is
break;
case 15: case 16: case
case 20: case 21:
printf("The moon is
break;
/* labels don't have
case 8: case 9: case 10
case 13: case l4:
printf("The moon is
break;
case 22: case 23: case
case 27: case 28:
printf('"The moon is
break;
>

More I/0 and Control Statements

32;
60;
91;
121;
152;
182;
213;

243;

[}

274

i

304;

it

334;

day;

startphase / LENCYCLE;

/* truncate the result */
LE;

case 4: case 5: case 6: case 7:
in its first quarter.\n");

17: case 18: case 19:
in its third quarter.\n');

to be in order */
: case 11: case 12:

in its second quarter.\n");
case 26:

24: case 25:

in its fourth quarter.\n'");

- 61 -



More I/0 and Control Statements Chapter 5

This program computes the current phase of the moon. It is based on
knowing the phase of the moon at some previous date (day and year). The
variable startphase is the number of days passed since that date. The number
of days is then divided by the lunar cycle length. Notice that several
arithmetic expressions involve mixing integer with double variable types.

This chapter has introduced you to character I/0 and a number of the other
control statements. Also covered was the use of include files. Next, you
will be looking at the use of these control statements with pointers and
arrays.

- 62 -



Chapter 6

Pointers and Arrays

Pointers are used extensively in C. They correspond to the address of some
data object. You were exposed to pointers when scanf's arguments were
described earlier. The address of operator (&) was used to obtain a pointer
to a variable. Now, you will learn how to declare and use pointer variables.

Pointer variables are declared by placing an asterisk in front of the
variable name. This declares the variable as a pointer to a value of the
specified data type. Some declarations of pointers follow:

char *ptrl; /* ptrl is pointer to char */
float *ptr2, realnum; /* ptr2 is pointer to float */
int  alpha,*beta; /* beta is pointer to int */

The pointer data type always reserves the same amount of space in memory,
just enough to hold a machine address (usually the same length as int). The
declaration is merely a reservation of space and does not initialize the
pointer to any address. Therefore, if you use a pointer before setting it to
an appropriate address, then chances are your program will not behave the way
you expect. To use a pointer in an expression, the unary operator for
indirection, *, must be used. This operator interprets the operand as the
address of the data you really want to use. It has also been referred to as
the contents-of operator, because the value produced is the contents of what
is pointed to in the operand.

| Memory |

| e | {mmmmmmmam
- I | object 1 |
| pointer | | —m e [{mmmmmmmmm I
| variable |--—==-==—m—mmm—————ee > | |
i | [ mm e m e i object 2 }

I

| -———m— [ {==mmmmmmm 1

| | object 3 |

| mmmm e | {mmmmmmmmm

A pointer variable contains the address of an object in memory. In other
words, it points to a particular location in memory. The size (in bytes) of
an object depends on its data type. The type of the pointer variable
determines the size of the object.

- 63 -



Pointers and Arrays Chapter 6

Example 6.1

main() /* Example 6.1 */

{

>

int *ptrl, xxx;
int old, new;
int *savptr;

XXX = 9;
ptrl = &xxx; /* ptrl contains address of xxx */
printf("ptrl = %Zx \n",ptrl);

/* get the contents of what is pointed to by ptrl */
old = *ptrl; /* old now has the value of xxx */
printf("old = %d \n",o0ld);

new = *ptrl + 1; /* new contains xxx + 1 */
printf("new = %Zd\n",new);

savptr = ptrl; /* save the old address */
printf("savptr = Zx\n'",savptr);

ptrl = &new; /* make ptrl point to new */
printf("ptrl = Zx\n",ptrl);

old = *ptrl + 1; /* an updated old value */
printf("old = %Zd\n",o0ld);

The output from this example follows:

ptrl = AOCA | Value is address

old = 9 | 01d has the same value as xxx

new = 10 | New is value of xxx + 1

savptr = AOCA | Pointers can be assigned

ptrl = AOCE | Set ptrl to new address (address of new)
old = 11 | Now old has value of new + 1

The example uses the format conversion specification, %x. This prints the

value of an integer variable in hexadecimal format. Since a memory address is
normally represented in hexadecimal format, the %x specification should be
used when printing the value of a pointer variable.

Recall from Chapter 3 that we can use the & operator to pass a variable by

reference to a function. A variable must be passed by reference if the
function is to alter the value of the variable. Inside the function

- 64 -



Chapter 6 Pointers and Arrays

definition, the arguments of the function must be declared as pointers when
passing values by reference. Consider the following example.

Example 6.2

main() /* Example 6.2 */
{ /* function returns value through arguments
int varl, var?2;

o

%/

varl = 25;

var2 = 99;

printf(''Variables before swap,');
printf("varl = %Zd , var2 = 7%d\n",varl,var2);

swap(&varl,&var2); /* swap these variagbles */
printf("Variables after swap,'");
printf("varl = %d, var2 = %d\n",varl,var2);

by

swap(ptrl,ptr2) /* function swap */
int *ptrl,*ptr2; /* arguments passed by reference */

{
int temp;
temp = *ptrl; /* save value of lst argument */
*ptrl = *ptr2; /* lst argument gets value of 2nd*/
*ptr2 = temp; /* 2nd argument gets value of lst*/
by

In this example, you see how the * operator is used. The arguments of swap
are both pointers to integer values. The statement

(*ptrl = *ptr2)
is read, "Contents of ptrl is assigned the contents of ptr2",

Another data type of C is the array. It is a set of data items in an
ordered sequence, but it is identified by only one name. The items, called
elements of the array, must all be of the same data type. The declaration of
an array specifies the number of elements and the array's name. Declarations
look like the following.

int digit[10]; /* digit is an array of 10 integers */
char letter[26]; /% letter is an array of 26 characters */
float number[100]; /* number is an array of 100 floats */

To reference an individual element of an array, you use the array name

- 65 -



Pointers and Arrays Chapter 6

followed by an open square bracket, [, an integer constant or integer variable
(known as the subscript), and a closing square bracket, ]. The following are
examples,

digit[7] letters[13] numbers|2]

The elements of an array are numbered beginning with 0, so the array digit
above has 10 elements numbered like the following:

digit[0],digit[1l],digit[2].....digit[8],digit[9].

The beginning of the array (base) is the address of the first data item.
The subscript is the index from the base item. Thus the first element,
digit[0], is 0 items from the base address and the second element, digit[1l],
is 1 item from the base address, etc. Great care should be taken to have a
valid subscript. The C language has no checks on the bounds of an array, so
in the example above, digit[10] and digit{255] are both syntactically valid,
but would produce unexpected results (random data from memory would be
referenced).

The following example will use an array to keep track of the occurrences of
the characters '0' through '9' in the program's input. First, the array is
initialized to zeros because the elements will be used as counters. If the
character read is a digit, then the appropriate array element is incremented
(i.e. If the character is a '0' then digit_count[O] is incremented, for a 'l'
then digit_count[l] is incremented, etc.).

Example 6.3

/* Example 6.3 */

#define MAX 10 /* bound of the array */
#include "'stdio" /* standard header file */
main()

{

/* Program counts occurrences of numbers in input */

int digit_count[MAX], 1i;
int char_in; /* What happens if this is type char? */

/* initialize the array to zeros */

for(i = 0; i < MAX; i++)
digit_count[i] = 0;

/* find digits in input and count occurrences */

- 66 -



Chapter 6 Pointers and Arrays

while ( (char_in = getchar()) != EOF) (
if (char_in >= '0' && char_in <= '9")
digit_count[char_in - 0" ]++,

/* print out information collected */

for(i = 0; 1 < MAX; i++)
printf(
"There are %d occurrences of %d in the input\n",
digit_count[i],i);

Notice the expression, char_in - '0', in the previous example. If char_in
is a value between '0' (decimal 48) and '9' (decimal 57), then char_in - 'O’
is a value between 0 and 9.

Individual elements of an array are referenced by using subscripts. It is
also possible to reference the whole array by simply using the array name
without a subscript. When no subscript is specified, the array variable is
treated as a pointer to the beginning of the array. For example, digit_count
without a subscript is treated as a pointer to the beginning of the array
named digit_count. Therefore digit_count and &digit_count[O] are equivalent
expressions. A pointer to the beginning of an array is equivalent to the
address of the first element in the array.

The most common array used in C is an array of characters. Even before you
learned about arrays in this tutorial, you were using character arrays in the
form of strings. A string, such as the format string in printf, is an array
of characters. The word string and array of characters can be used
interchangeably. There are two types of strings in C, a string variable and a
string constant. A string variable is a variable declared as an array of
characters (eg. char var[8];). A string constant is a quoted string (eg.
Habcﬂ) .

When a string constant is used in an expression, the result is actually a
pointer to the beginning of the string. For example, printf("abc") does not
pass the string abc to the function printf. Instead it passes a pointer to
where the string abc is stored. A string constant behaves like an array
variable referenced without subscripts.

Strings and pointers are very closely related in C. You will not often use
one without using the other. There are many standard library functions that
require string arguments. For these functions, either a string variable or a
string constant is used as an argument. In all cases, these arguments are
passed as pointers. A string variable should be used if the argument is a
pointer to where characters will be stored. If the characters are simply to
be accessed, then either a string variable or a string constant can be used.
The following example is an illustration of the relationship between string
variables, string constants, and pointers. Two of the standard library
functions, strcpy and strcat, are also used. Strcpy is a function that copies
one string to another. It requires two string arguments. The second argument
is copied into the first. Strcat is a function that concatenates two

- 67 -



Pointers and Arrays Chapter 6

strings. It also requires two string arguments. The second argument is
concatenated with the first.

Example 6.4

/* Example 6.4 */
main()

{
char name[45], first[15], middle[15], last[15];
char *format;
strepy(first, "Billy ");
strepy(middle, "Bob ');
strepy(last, "Texas ");
strcat(name, first);
strcat(name, middle);
strcat(name, last);
format = "The complete name is %s\n';
printf(format, name);

In the previous example, note that a string constant is assigned to a
pointer variable, format = "This complete name is %s\n", and this pointer
variable is used as the first argument to printf. This illustrates that the
use of a string constant results in a pointer to the string. Also note a new
format conversion specification, %s. Both scanf and printf use %s for reading
or writing strings.

A function that uses a string as an argument must have a way of detecting
the end of the string. For this reason, all string constants in C have an
extra character appended at the end to signal that there are no more
characters in the string. This string termination character is '\0', defined
as NULL in the standard header file, stdio. The decimal value of this
character is 0. All functions that use string arguments must check for this
character to determine when the end of the string has been reached. When a
variable is declared as an array of characters, you must be sure to dimension
the array one character larger than the longest string it will hold. This
allows a place for the NULL character to be stored in the array. In our
previous program, strcpy(first, "Billy ") is used to copy the string constant
"Billy " into the string variable first. The number of characters copied is
actually seven, the length of the string comstant plus the NULL character.

Back in example 3.4, you saw how you could initialize the value of a simple
variable in a declaration. You can also initialize array variables in a
declaration. In example 6.4 we used the strcpy function to assign values to
the arrays first, middle, and last. The same results could have been achieved
with the following declarations.

- 68 -



Chapter 6 Pointers and Arrays

char first[15] = "Billy '";
char middle{15] = "Bob ";
char last[15] = "Texas ";

Each declaration allocates an array of 15 characters and assigns the
~ characters in the quoted string to the array. For example, first[15] = "Billy
1" js equivalent to the following 7 assignment statements.

first[0] = 'B'; first[l] = 'i'; first[2] = '1';
first[3] = '1'; first[4] = 'y'; first[5] ="' ';
first[6] = "\0';

The size can even be omitted when initializing an array. For example, char
first{] = "Billy " could be used. 1In this case, the array first would be
allocated only seven characters of storage. This would be equivalent to using
char first[7] = "Billy ".

Besides scanf and printf, there are two other standard functions that may
be used to input or output strings. The input function is gets and the output
function is puts. The function gets reads a string of characters from stdin
until the newline character ('\n') is encountered. Gets replaces the newline
character with the NULL ('\0') string terminator character and stores the
string in the array passed as an argument. The array passed to gets must be
large enough to hold the string, allowing for the NULL character. The puts
function writes a string of characters to stdout. The NULL ('\0') character
that terminates the string is replaced by the newline character ('\n').
Therefore, gets and puts are used to read and write entire lines. Take a look
at this file copy example.

Example 6.5

#include "stdio"

#define MAXLINE 81 /* 80 characters plus NULL terminator */
main() /* Example 6.5 */
{

char line[MAXLINE];

printf("File copy from stdin to stdout\n');
printf("Input terminates with EOF");
while(gets(line) != NULL) puts(line);

The gets function returns the NULL character when the end of file is
reached or an error is detected. Since the NULL character has a decimal value
of 0 (false), the expression (gets(line) != NULL) could be replaced with
simply (gets(line)). Note that the variable line is used without subscripts.
What is passed to gets is a pointer to the beginning of the array. Using line

_69_.



Pointers and Arrays Chapter 6

without a subscript is equivalent to &line[0], the address of the first
element in the array.

Arrays of more than one dimension are also allowed. The following is an
example declaration for an integer array of two dimensions:
int bigone [5][10];

Individual elements of the array are referenced as follows:

bigone[0][0] = 10 /* first element */
bigonell]l{3] = 20; /* row 1 column 3 */
bigone[4][9] = 30; /* last element */

The elements of a two dimensional array are stored sequentially by
rows(rowl, row2,....etc.) It can be conceptualized by the following:

bigone[0][0], bigone[0][1] ...bigone[0][9],
bigone{1]1[0], bigone[l][l], ...bigomne[1l][9],
bigone[2]{0], bigone[2][2], ...bigone[2][9],
bigone[3][0], bigone[3][2], .bigone[3][9],
bigone[4][0], bigone[4][2] ...bigone[ 1191

As noted earlier, an array name that is not followed by a subscript is
treated as a pointer to the first element of the array. These pointers can be
used in arithmetic expressions to index through an array, the same as using
subscripts. The expression, AA[i], is equivalent to the expression, *(AA+i).

The result of both of these expressions is the value of the ith element of
array AA.

subscript addressing pointer addressing
AA[O] ! ! *(AA + 0)
AA[1] ! ! *(AA + 1)
AA[2] ! ! *(AA + 2)
AA[3] ! ! *(AA + 3)
AA[4] ! ! *(AA + 4)

The above pointer expressions will work on any type array. Why? When a
pointer variable is declared, the type specifies the size of the object. For
example, char *ptr;, declares that the variable ptr points to an object that
is one byte in length. The declaration, float *ptr, declares ptr to point to
an object that is several bytes in length, the size of a floating point
number. The same applies to an array declaration, the size of each element in
the array is defined.

Suppose we have a pointer to the beginning of an array of floating point

- 70 -



Chapter 6 Pointers and Arrays

numbers. If you add one to the pointer, the result is a pointer to the second
array element. The compiler takes into account the size of the object when
adding one to the pointer. For example, if AA is an array of floating point
numbers, and a floating point number is 4 bytes in length, then AA+] really
adds 4 to the pointer. The expression AA+2 would add 8 to the pointer, the
size of two floating point numbers. Take a look at the pointer addressing in
the following example.

Example 6.6

j#define MAX 10
main() /* Example 6.6 */
{

float count[MAX];

float *ptr;

int *iptr;

int icount{MAX], 1i;

/* initialize both arrays */
for (i=0; i < MAX; i++) ¢
count[i] = 0.3;
icount[i] = 1;

by

* assign ptr to point to sixth element of array */
ptr = &count[5];

*ptr = 1.; /* sets count[5] to 1. */
#(ptr - 1) = .9; /* sets count[4] to .9 */
*(ptr + 1) = 1.1; /* sets count[6] to 1.1 */
iptr = &icount[5];

*iptr = 0; /* sets count[5] to 0 */
*(iptr - 1) = ~1; /* sets count[4] to -1 */

]

*(iptr + 1) = 2; /* sets count[6] to 2 */

for (i=0; i < MAX; i++) { /* print both arrays */
printf("count[%d] = Zf ",i,*(count+i));
printf("icount[%d] = Zd\n",i,icount[i]);

The previous example shows addition and subtraction operations with
pointers. These are the only arithmetic operations that are valid with
pointers.

The increment and decrement operators may also be used with pointers. The
increment operator applied to a pointer variable increments the variable by

- 71 -



Pointers and Arrays Chapter 6

the size of the object to which it points (eg. ++ptr). The decrement operator
decrements the variable by the size of the object ( eg. ptr—-).

Two pointers can be compared using the relational operators (eg. ptrl ==
ptr2). They can also be subtracted (eg. ptrl - ptr2), but in this case both
pointers must point to the exact same array. Subtracting two pointers results
in the number of array elements between the two pointers.

The next example provides further illustration of the use of arrays and
pointers. In fact, one of the arrays in the example is an array of pointers.
That is, each element in the array is a pointer. The purpose of the program
is to sort a list of names into alphabetic order. First, a list of names is
read into a two dimension array of characters. In C, a two dimension array is
treated as an array of one dimension, each element of which is an array.
Therefore you can access a two dimension array using only a single subscript.
When a single subscript is used, the result is a pointer to the beginning of
the specified array element.

After the list of names is read into the two dimension array, a bubble sort
algorithm is used to sort the names into alphabetic order. Another standard
library function, strcmp, is used here. Strcmp takes two string arguments and
compares them., It returns a negative number if the first string is less than
the second, zero if the strings are identical, and a positive number if the
first string is greater than the second.

Rather than sort the names within the two dimension array itself, we use
another array of pointers. Each element of this array points to one of the
names in the two dimension array. Then by simply sorting the pointers to the
names, we can avoid having to move the names around during the sorting
process. This saves time since it takes less time to move pointers than large
arrays of characters. Our bubble sort algorithm is implemented by the
function named sort. Its first argument is a pointer to the array of pointers
and the second is the number of names to be sorted.

Example 6.7

/* NO_OF_NAMES is the maximum number of names */

#define NO_OF_NAMES 50

/* SIZE is the maximum number of characters in each name */
#define SIZE 31

main()

{ .
int i; /% counter */
int number; /* number of names read */
char name[NQ_OF_NAMES}[SIZE]; /* 2 dimension array of names */
char *nameptr[NO_OF NAMES]; /* array of pointers to names */

- 72 -



Chapter 6 Pointers and Arrays

/* read the names into the two dimension array */

printf(""--- Enter one name per line, EOF to terminate ---\n'");
for (number=0; gets(name[number]) && number<NO_OF NAMES; number++)
nameptr [number] = name[number];

if (number == NO_OF NAMES)
printf("\n *** only Zd names allowed ***\n", NO_OF NAMES);
printf("--- The names listed in alphabetic order ---\n");

/* sort the names */
sort(nameptr, number);

/* print the sorted names */
for (i=0; i<number; i++) puts{(nameptr[i]);

sort(names, number)

char *names[]; /* array of pointers to names */
‘int  number; /* number of names */
{

#define TRUE 1
#define FALSE O
int notsorted = TRUE;
int 1
char *ptr;
/* sort the names by sorting the array of pointers */
/* using a bubble sort algorithm */
—--number ;
while (notsorted) {
notsorted = FALSE;
for (i=0; i<number; i++)
if (strcmp(names[i], names[i+1]) > 0) {
notsorted = TRUE;
ptr = names[i]; /* swap the two pointers */
names[i] = names{[i+l1];
names[it+l] = ptr;

There are several interesting things to note about the previous program.
We use a for loop to read in all the names. The loop is terminated when the
function gets returns 0 (occurs when EOF is detected) or when the number of
names equals the maximum that will fit in the array. Notice that name[i] is
the argument passed to gets. This passes a pointer to where the ith name will
be stored. After the names have been read, each element in sortedname is made
to point at one of the names in the two dimension array. The sort function is
then called to sort the names. Notice that the declaration of the argument
names does not specify the size of the array. This is perfectly legal in C.
The sort function makes multiple passes through names. For each pass, every
name in the list is compared with the name following it. If the first name is
greater than the second, then the names are swapped. This involves merely

- 73 -



Pointers and Arrays Chapter 6

swapping two pointers in names. If even a single swap is made during a pass
through names, then another pass is required. When a complete pass is made
without any swapping, the list of names is sorted.

Another interesting use of pointers in C is the pointer to a function. You
have seen how to call a function simply by specifying its name. Now you will
see how to call a function without specifying its name. Instead you call it
through the use of a pointer. Although a little complicated in appearance,
pointers to functions are quite useful in many applications. Using pointers
to functions, a single statement in C may perform many different tasks,
depending on which function is called. Now let's take a look at some
declarations.

int £1(0);
int *£2();
int (*¥£3)();

The first line declares a function named fl that returns an integer. The
second line declares a function named f2 that returns a pointer to an
integer. The third line declares a variable (not a function) named f3 that is
a pointer to a function that returns an integer.

To call a function in C, you specify the function name followed by a list
of arguments inside parentheses. If the function does not have any arguments,
you follow the function name by an empty argument list, (). If you simply
specify the function name without an argument list, the function is not
called. Instead, a pointer to the function is the result. Looking back at
our previous declarations, f3 is a pointer variable while fl and f2 are actual
functions. Using an assignment statement, we can make f3 point to either fl
or f£2. The statement £3 = fl causes f3 to point to the function fl. The
statement f£3 = f2 causes f3 to point to the function f2.

Once f3 has been assigned to point to a function, the function may be
called by using f3. Consider the following example.

£3 = f1;
(*£3)();

The first line assigns f3 the address of function fl. The second line
calls the function fl through the use of the pointer.

Now let's extend our declaration of a pointer to a function to be an array
of pointers to functions. The following program declares an array of 3
pointers. Each pointer is a pointer to a function that returns a double
result,

- T4 -



Chapter 6 Pointers and Arrays

Example 6.8

f#define PI 3.141592654

main() /* Example 6.8 */

{
int i
double sin(); /* standard library function for sine */
double cos(); /* standard library function for cosine */
double log(); /* standard library function for logarithm */

/* 3 element array of pointers to functions returning double */
double (*trig_function[3])();

trig_function[o] = gin;
trig function[l] = cos;
trig_function[2] = log;

/* print the values of sin(PI), cos(PI), and log(PI) */
for (i=0; i<3; i++) printf("%Zf\n", (¥trig_function[i])(PI));

The previous program uses three standard library functions, sin, cos, and
log. Each of these functions require one argument. Notice that they must be
declared for two reasons. First, these functions return double results. All
functions that return a result other than int must be declared. Second, we
use these functions without argument lists when they are assigned to the
pointer array. The compiler must know that they are functionms or it will flag
them as undeclared variables. Once the pointer array is assigned the three
functions, it is used to execute each of the functions. The for loop prints
out the value of each function using the value of PI as the argument.

The next example is a program that evaluates the time value of money using
4 types of calculations. Option 1 calculates what a single lump sum payment
made sometime in the future is worth today. Option 2 calculates what a single
lump sum payment made today would be worth at some time in the future. Option
3 calculates what the monthly installments over a period of time would be to
equal a lump sum payment made today. It will also print a table showing the
principle and interest paid out over the specified period of time. Option 4
calculates what a series of monthly payments made over a specified length of
time is worth today. The four options are executed by calling four separate
functions. These functions are called through the use of an array of pointers
to functions.

- 75 —



Pointers and Arrays

Example 6.9

#include "stdio"

main()

{

Chapter 6

/* Example 6.9 */

double amount, rate, factor;

int option, months;
int i

/% declaration of functions */

int present _value(); /*
int future value(); /*
int monthly(); /*
int monthly value(); /*

/* declaration of array

int (#function[41)() = ¢

present value of future payment */

future value of present payment */

monthly installments on a present payment */
present value of monthly installments */

of pointers to functions */
present_value, future value,
monthly, monthly value};

menu(&option,&months,&rate,&amount); /* display menu */

for(;;) (

/* loop forever */

for (factor = l+rate, i = 1; i < months; i++)
factor = factor * (1 + rate);

/* call appropriate function */

(*function[option])(factor, amount, rate, months);

menu(&option, §months

,&rate, &amount) ;

- 76 -



Chapter 6 Pointers and Arrays

menu(option,months,rate,amount) /% display menu and collect
the input values */
int *option, *months;
double *rate, *amount;
{
printf(
"\nl) present value of a single future payment\n");
printf(
"2) future value of a single present payment\n');
print£(
""3) monthly installments on a present payment\n');
print f(
"4) present value of monthly installments\n'");
printf(
"5) <<exit program>>\n\n");
printf(" enter option --> ");
scanf("%d",option);
if (*option<0 || *option>4) exit(0); /* exit program */
else (*option)-—; /* make option 0..3 */
printf("\nenter # of months --> ");
scanf("%d" ,months) ;
printf("enter annual interest rate (%%) —-> ");
scanf("%1£f" ,rate);
*rate = *rate/1200;
printf("enter dollar amount --> ");
scanf("%1£f%*c", amount);

>

present_value(factor, amount)
double factor, amount;

{

printf('"the present value is 7%9.2f\n", amount/factor);

>

future value(factor, amount)
double factor, amount;

{

printf('the future value is %9.2f\n", amount*factor);

b

- 77 -



Pointers and Arrays Chapter 6

monthly(factor, amount, rate, months)
double factor, amount, rate;
int months;
{
int answer, 1i;
double result;
double accum interest = 0;
double owed, interest, principle;

result = factor * amount * rate / (factor-1);
printf('the monthly payment is %9.2f\n", result);
printf("do you wish to see the table (y or n)? ");
answer = getchar();
putchar('\n');
if( answer == 'y' || answer == 'y') {
accum_interest = 0;
owed = amount;
for (i = 1; i<=months; i++) ¢
interest = rate * owed;
principle = result ~ interest;
owed = owed - principle;
accum_interest = accum interest + interest;

printf(" month principle interest ");

printf(" amount owed accumulated interest\n'");

printf(" %2d %9.2f 29.2f",
i,principle,interest);

print£(" %9.2f %9.2f\n",

owed,accum interest);

b

monthly value(factor, amount, rate)
double factor, amount, rate;
{
printf('the present value is %9.2f\n",
amount * (factor-1)/(rate * factor));

There are some points to bring out about the previous program. You should
notice in the main function that the elements of the array of pointers are
initialized in the declaration. Any type of array may be initialized by
placing values of the appropriate type inside braces {}. In this declaration,
the values are pointers to functions. The values must be separated by
commas. The first value is assigned to element 0, the second to element 1,
and so on. Notice that the arguments to the menu function are preceded by the
address of operator (&). This passes the variables by reference so that the
menu function may define values for them. One of the arguments is the
variable which contains the user's selected option. This option is used
inside the for loop to select the appropriate function that is called via the
array of pointers to functions. Notice that the for loop has three null
expressions creating an infinite loop. So how does the program ever
terminate. The answer to this question may be found in the menu function.



Chapter 6 Pointers and Arrays

Fach time through the for loop, the menu function is called to collect the
input data. Option 5 of the menu is selected to terminate the program. Note
that if an option less than 1 or greater than 4 is selected, the function
named exit is called., This is a standard library function that causes a
program to terminate. Note the last line in the menu function. The
conversion specification Z*c is used in the format string of scanf. The * is
an assigoment suppression symbol that causes the next value read to be
discarded. The %*c says to read and discard the next character in the input.
In this case, the next character is the newline character that is typed after
entering the amount. This is actually needed only if option 3 is selected.
The reason is that scanf skips over newline characters when reading numbers.
However, option 3 requires a subsequent input of a character (the statement
answer = getchar() in the function monthly). If the newline character had not
been consumed by the 7Z*c, then the call to getchar would have returned the
newline character.

Another interesting thing to note about the program is that the main
function calls each of the other functions with 4 arguments. If you look at
the other functions, you'll see that only monthly requires 4 arguments. C
allows you to pass fewer or more arguments to a function than the function
declares. If more arguments are passed, the function simply cannot access the
excess arguments since they aren't declared. 1If fewer arguments are passed,
then the function must access only the arguments that are passed. An attempt
to access a declared argument that is not passed will result in a fatal
runtime error.

You should now have a fairly good understanding of how arrays and pointers
are used in C programs. You've seen both one and two dimension arrays.
Arrays of more than two dimensions are also allowed. You've seen various uses
of pointers, including pointers to characters and pointers to functions. Up
to now, all the variables used have been of the same storage class and scope.
The next chapter explains what 1s meant by these two terms and shows you other
ways of declaring variables.






Chapter 7

Storage Classes and Scoping

You have learned that all C variables have a type. They also have a
storage class and what is known as scope (the part of the program over which
it is defined). The variables you have seen so far are local to a specific
function. They are declared within that function and no other functions have
access to them. Local variables are temporary. They "come into existence"
when the function is entered and '"go away' when the function is exited. Their
storage class is auto, meaning the local variables are automatically allocated
memory when the function is entered and the memory is automatically recovered
when the function terminates. A storage class may be specified just before
the variable's type when it is declared, but it is not required. When no
storage class is specified in the declaration of a variable, inside a
function, the default storage class is auto. The following are valid
declarations of auto variables:

main()

{
float a; /* defaults to storage class auto */
auto bb; /* defaults to type int */

auto char cc; /* equivalent to char cc; */

b

Automatic variables do not retain their values between function calls and
must be set every time the function is entered. If you want to make a
variable available to several functions at a time, C has a storage class to
define variables globally. Global variables are permanent and can be shared
by two or more functions. A global variable is a variable that is declared
outside a function. Because global variables are declared external to
functions their storage class 1s called extern. The following example
illustrates the declaration of a global variable:

int gblsave;
main()
{
by
All references to a global variable are to the same object. A global

variable's scope is from the point in the file it is declared until the end of
the file. All functions following the declaration may use the global

- 81 -



Storage Classes and Scoping Chapter 7

variable. However, if a function declares a local variable of the same name,
that function cannot use the global variable. Consider the following example
with the two global variables, al and bl.

Example 7.1

/* Example 7.1 */

int al = 1; /* global variable al */
main()
{
al = 2; /* changes the global value */
printf("al inside main function = %d\n'",al);
next();
printf("After call to next, al = %Zd\n',al);
nextl ();
printf("After call to nextl, al = %Zd\n",al);
b4
int bl; /* bl is extern int */
next ()
{
char al; /* in next al is auto character */
al = 'a';
printf("al inside next function = Zc\n",al);
bl = 77;
printf("'bl inside next function = %Zd\n",bl);
b4
next1()
{
float bl; /* bl is auto char */
bl = 19.3;
printf("al inside nextl function = %d\n",al);
printf("bl inside nextl function = %6.2f\n",bl);
al = 13;
)

- 82 -



Chapter 7 Storage Classes and Scoping

The output from the program Class / type

|

f

l
al inside main function = 2 | extern / int  (global)
al inside next function = 'a' | auto / char (local )
bl inside next function = 77 | extern / int  (global)
After call to next, al = 2 |  extern / int (global)
al inside nextl function = 2 | extern / int  (global)
bl inside nextl function = 19.30 | auto / float (local )
After call to mextl, al = 13 | extern / int  (global)

Note that the global variable al is not accessible from the function next
since it is declared as a local variable. Also note that the global variable
bl is not accessible to the function next]l for the same reason. The global
variable al is used inside the functions main and nextl, while the global
variable bl is used only inside the function next.

Take a look at the changes that the variable bl goes through. It is
globally declared between the main function and the function next, giving it a
storage class of extern. Then bl is used inside the function next as a global
integer. In the function nextl, bl is declared to be an auto float variable,
overriding the type and storage class of bl. If you had tried to use a
variable bl in the main function it would be flagged as undefined by the
compiler. Even though bl is a global variable, the C compiler doesn't know
about it until the definition between main and next is read.

Globally defined variables are available for all functions in your C
program. Even functions that are separately compiled may share global
variables. However, you must be careful to properly declare the variables.
All global variables must be defined once and only once. What you have seen
previously is the definition of a global variable. Note that we called the
storage class for global variables, extern, but did not specify this keyword
in the declarations. When extern is not specified, the declaration is called
a definition because it actually allocates storage for the variable. If
extern is specified, no storage is allocated for the variable. It is assumed
that there is a definition for the variable somewhere else, perhaps in another
source file. Therefore, the keyword extern should be used when you wish to
provide a function access to a global variable that is defined in another

source file.

extern char stack[10];
extern int allkey, stkptr;

Without the keyword extern, the above declarations would be definitions and
cause the C compiler to reserve space in memory for a global variable. With
the keyword extern specified, the compiler does not reserve space. It assumes
that the variable is defined somewhere else and merely outputs a reference to
that variable. In example 7.1 you could have included an extern declaration
for the global variable al in the function nextl. The declaration is not
required however, because the definition of al is known to the compiler when

- 83 -



Storage Classes and Scoping Chapter 7

the function nextl is compiled. Take a look at the same example broken up
into three separate compilations:

Example 7.2 - file 1

/* Example 7.2 - file 1 */

int al = 1; /* global variable al */
main()
{
al = 2; /* changes the global value */
printf("al inside main function = %d\n",al);
next();
printf("After call to next, al = %d\n",al);
nextl1();

printf("After call to nextl, al = %d\n",al);

Example 7.2 - file 2

/* Example 7.2 - file 2 */

int bl; /* bl is extern int */

next ()

{
char al; /* in next al is auto character */
al = 'a';
printf("al inside next function = 'Zc'\n",al);

bl = 77;
printf("bl inside next function

%Zd\n",bl);

- 84 -



Chapter 7 Storage Classes and Scoping

Example 7.2 — file 3

/* Example 7.2 - file 3 */

next1()

{ .
extern int al;
float bl; /* bl is auto float */
bl = 19.3;

printf("al inside nextl function = %d\n",al);
printf("bl inside nextl function = %6.2f\n",bl);
al = 13;

]

>

Notice that inside the function nextl there is a declaration for the global
variable al. This will reference the location reserved by the definition of
al in file 1. Also, look at the function next. It has a local character
variable al that in no way conflicts with the integer global variable al.

You will have to learn about the linking loader to run this example.
Compile each file separately, then load each file and the C standard
libraries. You then can run the program. Please see the Systems
Implementation Manual for details on using the linking loader.

A1l global variables are initialized to zero at compile time. As you can
see, global variables are great for passing information between more than one
function. But, they are also inherently dangerous. All functions can modify
the contents of a global variable. It would be nice to allow some functions
to have access to a global variable, but not all functions. The C language
provides this feature in the static storage class. This class used on a
global variable tells the compiler to make the name visible to all the
functions in this compilation omly. Thus, the variable is global to all
functions in the file in which it is defined, but it hides the name from other
source files. The following are static variable definitions:

static count; /* defaults to int ¥/
static char name{8];

The next example shows the use of global static variables. The first set
of functions define a data structure called a stack and the functions to
manipulate the stack. Both the stack pointer, topptr, and the stack itself
are accessible by all four functions push, pop, top_reset, and stk _lst because
they are compiled together. However, these static global variables are not
available to the separately compiled main function. In this manner, you build
a set of functions to access and manipulate the global variables, but they are
protected from being accessed by any separately compiled function. Here is
the definitions of the functions, push, pop, top reset, and stk_lst:

- 85 -



Storage Classes and Scoping Chapter 7

Example 7.3

/* Example 7.3 */

#define STKMAX 20 /* maximum size of the stack */
static topptr = 0; /* stack pointer */

static stack[STKMAX]; /* the stack itself */
push(vall) /* push value onto stack */

int vall;

{

if (topptr < STKMAX)
return( stack[topptr++] = vall);
else {
printf("Error - stack overflow\n'");
return(-1);

b
)
pop ()
{
if (topptr > 0)
return(stack[--topptr]);
else {
printf("Error - stack empty\n');
return(-1);
)
)

- 86 -



Chapter 7 Storage Classes and Scoping

top_reset() /* reset stack */
{
topptr = 0;
>
stk_1st()
{
int count;
printf("\nThe stack contains the following');
printf(", starting at the top:\n'");
if (topptr == 0) printf("empty\n");
else for(count = topptr - l; count > -1; count—-)
printf("stack[%Zd] = %Zd\n",count,stack[count]);
)

The following is a main function that must be compiled separately. You can
use it to test the stack manipulation modules just defined:

main() /* Example 7.3 - file 2 */

{
int count; /* test push, pop, & top_reset */
int pop(),push(),stk _lst(),top reset();

top_reset(); /* start off with fresh stack */
stk _1st(); /* see if stack is empty */
for(count=0; push(count)> ~1; count++) ;
stk_1st(); /* list current contents */
while (pop() > -1);
stk_1st(); /* see if stack empty */

)

The static storage class may also be used for local variables. Inside a
function, the static storage class makes local variables permanent. The
variables declared to be static no longer 'disappear" when the function
exits. This allows the variable's value to be retained over multiple function
executions. The following is a short example:

- 87 -



Storage Classes and Scoping Chapter 7

Example 7.4

/* Example 7.4 */
#define MAX 5
main()
{

int count;

printf('"Please enter 5 numbers to be summed:\n");
for (count = 0; count < MAX; count++)

sumit();
printf("Program completed\n'");

)
sumit{)
{
static sum;
int num;
printf("Enter a number:\n");
scanf("%d",&num) ;
sum += num;
printf("The total is %d \n'",sum);
>

Static variables, like globals, are initialized to zero by default.
However, notice that the static variable was initialized only once at compile
time and not every time the function is entered.

The static storage class may also be applied to functions. When you define
a function such as sumit in the previous example, the compiler assumes a
storage class for the function of extern. The extern storage class means that
the function is visible to all other functions in a program, even the
functions that are compiled separately. When the static keyword precedes a
function definition, the function acquires the static storage class. A static
function is visible only to the other functions that are compiled with it.

This next example shows an example of a static function. Part numbers are
entered one by one into an array, bin, representing a set of part bins. The
array is declared to be static so that the actual details of the array
implementation, such as its size, are not available to the main function. If
the array has never been accessed before, then the static function init is
called. The functions allocbin and printbin are accessible from the main
function, however the function init is not. The use of a static function
keeps you from accidentally calling the init function and thus destroying the
part information.

- 88 -



Chapter 7 Storage Classes and Scoping

Example 7.5 - file 1

#define TRUE 1

#define FALSE O

#define MAX 100

static long bin[MAX];
static int bin number = 0;
static int first = TRUE;

static init()

{
int 1;
for(i=0; i < MAX; i++)
bin[i] = -1;
first = FALSE;
}
allocbin(partno)
long partno;
{
if (first) init();
if (bin_number < MAX)
bin{bin number++] = partno;
else -
printf("Error - Out of Part Bins\n'");
>
printbin()
{
int 1i;
for (i=0; i<MAX; i++)
if (bin[i] != -1)
printf("bin #%d = %Z1d\n", i, bin[i]);
}

Notice that the static function init is defined before the extern function
allocbin. This is necessary so that the call to init from allocbin is treated
as a call to a static function rather than to an extern function.

This is the main function used to enter parts into a bin.

- 89 -



Storage Classes and Scoping Chapter 7

Example 7.5 - file 2

main()

{

int allocbin(), printbin();
long partno = 1;
int bin_number;
printf("-- Enter 0 to terminate data entry --\n'");
do ¢
printf("Enter part number: ");
scanf("%1d", &partno);
if (partno) allocbin(partno);
} while (partno);
printbin();
)2

This chapter included information on the various storage classes and
scoping of variables. Among the topics covered was separate compilation
involving global and static variables. The next chapter discusses two
features of the language that are often used together, structures and dynamic

memory.

- 90 -



Chapter 8

Structures and Dynamic Memory

It is sometimes convenient to organize a group of related data items under
a single variable name. The C language provides this ability with a data type
called structure. A structure is actually a group of one or more variables
that are referenced by a single name. The variables in the structure do not
have to be of the same data type.

A structure is declared using the keyword struct, followed by a list of
variable declarations enclosed by braces. Each variable in the list is
considered a member of the structure. This part of the declaration may be
thought of as a user defined type. Following the list of structure members is
a list of variables. Each variable in this list has the type defined by the
members of the structure. That is, each variable is composed of all the
members of the structure. Here are some structure declarations:

struct {
char f name|
char m_init|
char 1 name|
int b month
int b_day;
int b_year;

} newperson, oldperson;

b

8]
11;
10];

>

struct {
int item no;
float cost;
float retail;
} part, food item;

When the above declarations are compiled, four variables are declared:
newperson, oldperson, part, and food item. The memory reserved is the amount
necessary to hold all the members of the structure for each variable. For
instance, the variable food item is the size of one integer number plus the
size of two floating point numbers.

A member of a structure variable is accessed using the C dot operator, .,
like the following:

- 9] -



Structures and Dynamic Memory Chapter 8

part.item no = 999;
part.cost = ,29;
newperson.fname[0] = 'A';

The combination of variable name, the dot operator, followed by the member
name is treated just like any other simple variable. As such, it can appear
anywhere in a C expression that a variable is allowed, including on the left
hand side of an equal sign. The following are legal uses of member names:

printf(" This is the cost %d\n'",part.cost);
part.retail = part.cost * 1.5;
newperson.f name[l] = 'j';

The following program illustrates the use of a structure variable. The
variable input_rec is a structure containing three members: hours, minutes,

and temp.

Example 8.1

#include "stdio"
main() /* Example 8.1 */
{
struct {
int hours;
int minutes;
int temp;
» input_rec;
double convert(),ctemp;
char c¢;

printf("This program calculates military time");

printf(" and centigrade temperatures\n');

printf("Enter current time (hh:mm) : ");

scanf("%d:%d%*c",&input_rec.hours,
&input_rec.minutes);

printf("Is it PM ? (Y or N) ");

¢ = getchar();

if (¢ =="'Y" || ¢ == 'y")
input_rec.hours = input_rec.hours + 12;
printf("Enter Fahrenheit temperature : ");

scanf("%d", &input_rec.temp);

ctemp = convert(lnput rec.temp);

printf("Time using 24-hr clock = %02d:%02d\n",
input_rec.hours lnput rec.minutes);

prlntf("Temperature is %3.1f degrees Celsius. \n",

- 92 -



Chapter 8 Structures and Dynamic Memory

ctemp);
)

double convert(ftemp)
int ftemp;

{
return((ftemp - 32.) * 5./9.);

The variable input_rec is allocated enough memory to hold the three integer
variables: hours, minutes, and temp. Notice that the address of a structure
member is passed to scanf.

In the previous example, the variable input_rec was the only structure
variable used and it was used only in the main function. Often when you
define a particular structure, there is a need to use that structure for
variables in many different functions. In such a case, you may specify a
structure name that can be used when declaring variables at various places in
a program.

The name appears in the declaration between the keyword struct and the
opening brace. Take a look at the following named structures.

/* structure named, no variables declared */
struct date {
int month;
int day;
int year;

33

/* structure named & pupil in declared */
struct stu record {

int student_noj;

char class_id[3];

int test[3];

int project;

int overall grade;
> pupil inj;

The structure date is only a type template. The compiler does not allocate
any storage for date, but it does keep the information about the size of the
structure and the names of its members. The second declaration above,
stu record, allocates space for one variable by the name of pupil_in.
Additionally, the compiler keeps the information about stu record's size and
its member names for later use.

To use a previously defined structure type, you just follow the keyword
struct by the structure's name, and then finally list any variables to be
declared. These are declarations that utilize the structure definitions

previously seen.

_93..



Structures and Dynamic Memory Chapter 8

struct stu_record cs_student, math_student;
struct date birth_day, today;

These declarations state that cs_student and math_student are variables of
type stu record. Likewise, the variables birth_day and today are structures
of type date. Memory is allocated for these variables when these declarations
are processed.

Another example of the use of structure names is in the declaration of
nested structures. For example, an inventory structure can contain members for
the item number, the item's cost, the item's retail price, and the date it was
ordered. The date itself can be a structure composed of the month, day, and
year. You can even carry the nesting further by making another structure
composed of the inventory information plus the date the part was shipped and
its shipment number. Take a look at how you would make these declarations:

struct date <
int month;
int day;
int year;

¥

struct inventory {

int item no;

float cost;

float retail;

struct date buy_date;
75

struct {

struct inventory part;

struct date ship_date;

int shipment; /* shipment number */
} car_item;

To reference a shipment number you simply use car_item.shipment, just like
you've seen before. To reference an item number on a part you would use
car_item.part.item no. The member-of, ., operator associates left to right so
the compiler has no problem understanding the above construction as the
item no member of the structure, part, within the structure car_item. To
access the month part -of the shipping date you would use:

car_item.ship date.month

However, to reference the month part of the order date you would use:

car_item.part.buy_date.month

- 94 -



Chapter 8 Structures and Dynamic Memory

Structure variables can also be declared as any one of the C storage
classes. The scoping of these structure variables is the same as regular
variables: Auto is known only to the function in which it is declared; Global
static structures are known within the file they are declared; Local static
structures are local to a function but retain their values permanently; Global
structures are available for use by all functions in a program.

Structure variables can not be passed as arguments to functions. However,
a pointer to a structure can be passed. A pointer to a structure is passed to
a function using the address-of, &, operator. You must remember to declare the
argument inside the function as a pointer to the structure. Consider the
following example.

struct inventory {
int item no;
float cost;
float retail;

¥

main{)

{
struct inventory newpart;
newpart.item no = 10;
newpart.cost = 29.95;
newpart.retail = 49.95;
print_structure(&newpart);

b

print_structure(part)
struct inventory *part; /¥ ptr to struct */
{
printf("no. = %d cost = %5.2f retail = %5.2f",
(*part).item no, (*part).cost, (*part).retail);

>

Notice how the structure members are accessed in the print_structure
function. Both the * and . operators are used. Since the . operator has the
highest precedence, the parentheses around *part are necessary. The
expression *part.item no would cause a compile error since it would be
equivalent to *(part.item no), treating the member item no as a pointer
instead of the variable part.

Accessing structures using pointer variables in this way is a little messy
as you can see. Luckily there is another C operator that can be used with
pointers to structures., The -> (pointer operator), which is formed by a minus
sign followed by a greater than sign, will help clean up the mess. The
expression (*part).item no is equivalent to part->item no. This looks much
better doesn't it? Let's take a look at another program that uses pointers to
structures.

-95..



Structures and Dynamic Memory

Example 8.2

struct name {
char last[15];

char first{15];
Y3
struct _address {
char street[25];
char city[15];
char state[15];
long zip;

>3

struct label ¢
struct name name;
struct _address address;

>

main()

{
struct label customer;
getlabel(&customer);
putlabel(&customer);

3

- 96 -

Chapter 8



Chapter 8 Structures and Dynamic Memory

getlabel(customer)
struct label *customer;
{
printf("Enter Name : ")
scanf("%s%s%*c", customer->name,.first,
customer->name.last);
printf("Enter street : ")
gets(customer—>address.street);
printf("Enter city, state & zip : ");
scanf("%s%s%1d%*c", customer->address.city,
customer->address.state,
&customer—>address.zip);

by

putlabel(customer)

struct label *customer;

{

printf£("\n%s Z%s\n%s\n%s %Zs %1d\n",

customer->name.first,
customer->name,last,
customer->address.street,
customer->address.city,
customer~->address.state,
customer->address.zip);

Take a look at the getlabel function. First it uses the scanf function to
input the first and last names. Notice that the format string is ended with
%%c, This is necessary to consume the newline character that must be typed
after the last name is entered. The reason that the newline (end of line)
character must be consumed is that the next input is entered using the gets
function. Remember that the gets function reads until the end of line is
encountered. If the newline character is not consumed by scanf, gets will
think it is at the end of line and will not read any characters. The 7%*c is
also used to consume the newline character typed after entering the zip. This
is a good practice even though it may not be necessary. Whether it is
necessary or not depends on how the next input from stdin is read. If the
next input is read using gets or using scanf with %c, then the newline
character should be consumed. Scanf will skip over newline characters for any
format except %c. You should also note that the & (address of) operator is
used only to input the long integer member, zip. All the other members are
arrays. Remember that an array reference without subscripts is equivalent to
the address of the first element of the array.

Arrays and structures can be used together so that each element of an array
is a structure. A declaration might look like the following.

..97...



Structures and Dynamic Memory Chapter 8

struct {
int item no;
float cost;
float retail;
>  bin[5];

This declaration creates a 5 element array, each element of which is an
entire structure. You can visualize the allocation of memory for this
declaration as follows.

bin[0] | item no | cost | retail |
bin[1] ; item mno : cost } retail {
bin[2] : item_no ; cost : retail {
bin[3] ; item no § cost ; retail }
bin[4] 5 item no g cost f retail E

Each array element is a structure that can hold an item no, cost and retail
price. The structure members of each array element are accessed as follows.

bin[O].item_no bin[0]l.cost bin[0].retail
bin[l].item_no bin[l]}.cost bin[l].retail

Now let's extend example 8.2 so that more than one customer label may be
entered. Since there might be multiple customer labels, they will be sorted
before printing them out. For this we will use the sort function created back
in example 6.7. The customer labels will be sorted using the customers last
name only. Before compiling the next program, you should create three files.
From example 8.2, create a file named structs containing the three structure
definitions, _name, _address, and label. Create a file named labelio
containing the getlabel and putlabel functions. Also create a file named sort
containing the sort function from example 6.7.

- 98 -



Chapter 8 Structures and Dynamic Memory

Example 8.3

#define MAX 100

#include "stdio" /* include standard header file */

#include "structs" /* include the structure definitions */

#include "labelio" /* include the getlabel and putlabel functions */

#include "sort" /* include the sort function */
main()
{

struct label customer[MAX];

int i, number = 0;

char more = 'Y';

char *names[MAX];

while (more == 'Y' || more == 'y') (

if (number < MAX) {
names [number] = customer[number].name.last;

getlabel(&customer[number++]);
printf('"More labels? (Y/N): ");
more = getchar();

>

else {
printf("* Maximum number of labels is %d *\n'", MAX);
break;

>

b

sort{names, number);
for (i=0; i<number; i++) putlabel(names[i]);

Example 8.3 declares an array of structures to hold the customer labels and
an array of pointers. The array of pointers is used to point to the
customer's last name in each label. This array is passed as an argument to
the sort function. Notice that the elements of this array are also passed to
the putlabel function. The putlabel function expects a pointer to a customer
label, this being a whole structure. Due to the fact that the customer's last
name is the first member in the structure, a pointer to the last name is
equivalent to a pointer to the whole structure. In other words, &customer[i]
is equivalent to customer{i].name.last.

Now that you are familiar with structures, let's discuss dynamic memory
allocation. Dynamic memory allocation is simply the allocation of memory for
a variable while the program is executing, versus allocating the memory when
the program is compiled. When you define an array, the type and dimension of
the array tells the compiler how much memory to allocate. When your program
executes, the array will consume this amount of memory regardless of whether
or not you actually use all the elements in the array. In example 8.3, we
defined the size of the customer array to be 100. Even if we don't use 100

_99._



Structures and Dynamic Memory Chapter 8

customer labels, the memory to store the 100 labels is reserved and we can't
use it for anything else. This is quite wasteful since the elements of the
customer array are quite large, each element being a structure containing 5
arrays and a long integer. A case such as this is where dynamic memory
allocation will provide more efficient use of memory.

There are two areas of memory created for the variables in a program. The
first is called the stack. This is where the compiler allocates memory for
variables. Every variable that is declared is stored in the stack. The other
area is called the heap. The heap is the area of memory reserved for the
program's use. You control how this part of memory is allocated to
variables. You can allocate memory for a variable and you can free the memory
when the variable is no longer needed. There are two standard library
functions, calloc and cfree, that are used just for this purpose. Calloc
allocates the memory for a variable and cfree frees the memory when the
variable is no longer needed.

The calloc function requires two arguments. The first is the number of
objects for which memory will be allocated. The second is the size of each
object. The calloc function allocates enough memory from the heap to store
the objects and returns a pointer to the allocated memory. If there is not
enough memory rehaining to store the objects, calloc returns NULL. The return
value should be checked so that you do not attempt to store objects using a
NULL pointer. A pointer that has the NULL value corresponds to address O.
Storing an object at this address would most certainly be fatal to your
program.

The cfree function requires only one argument which is a pointer to an
allocated block of memory. The cfree function frees the block of memory at
that address so that it may be reused. This function should be passed only
pointers that were previously returned by the calloc function.

Now let's modify example 8.3 so that we use dynamic memory to store our
customer labels instead of using an array. You will notice the use of another
C operator in this example. The sizeof operator is used to get the size of a
customer label. We must pass the size of a customer label to calloc in order
to allocate the correct amount of memory. The sizeof operator takes one
operand which may be a variable name or the name of a type. The result is the
size of the variable or the type. The sizeof operator prevents us from having
to know the size of a C data type. For example, the size of the long data
type can be obtained by sizeof(long). This operator allows you to write
programs that do not rely on the machine dependent size of a data type. 1In
our example, we use a structure type as the operand. The expression
sizeof(struct label) results in the size of a customer label.

-~ 100 -



Chapter 8 Structures and Dynamic Memory

Example 8.4

#define MAX 100
#include "stdio" /* include standard header file */

#include "structs'" /* include the structure definitions */
#include '"labelio" /* include the getlabel and putlabel functions */

#include "sort" /* include the sort function */
main()
{

int i, number = 0;

char more = 'Y';

char *names [MAX];

while (more == 'Y' || more == 'y') {

if (number < MAX) {
names [number] = calloc(l, sizeof(struct label));

if (names|[number] != NULL) getlabel(names[number++]);
else {

printf("<<< Out of Memory >>>\n");

break:
)

printf("More labels? (Y/N): '");
more = getchar();

b

else {
printf("<<< Maximum No. of Labels is %d >>>\n'", MAX);
break;

b

b

sort(names, number);
for (i=0; i<number; i++) putlabel(names[i]);

Notice that the customer array has been eliminated. We now use only the
amount of memory required to store the number of customer labels entered. If
our program performed other functions, we could use the memory saved to store
other variables. Note that we are still limited to a fixed number of customer
labels. This limitation is imposed by the pointer array, names. However,
since names is an array of pointers, each element is small. Therefore, we
could make the names array larger without paying a large penalty in wasted
space for the unused elements.

A data structure that can be used to eliminate the array of pointers is the
linked list. A linked list, as its name implies, is a list of data items that
are linked together. A structure such as our customer label could become a
data item in a linked list. To turn our customer labels into a linked list,
we first need a pointer variable that will point to the first label in the
list. The following declaration will create a variable that we can use as a

- 101 -



Structures and Dynamic Memory Chapter 8

pointer to the start of our linked list.

struct label *first_label;

Next we need a way to link the first label to the second, the second to the
third, the third to the fourth, and so on. To accomplish this, we add another
member (the link) to the label structure that is also a pointer to a customer
label.

struct label {

struct name name;
struct address address;
struct label *next;

>

Now we can link the first label to the second using the member named next.
Each label in our list will use the member named next to point to the next
label in the list. So now we can find the first label in the list using the
first_label. Then we use the next member of the first label to find the
second, and so on. We simply follow the links to get from ome label to the
next in our list. But how do we know when we get to the end of the list? To
signal the end of our linked list, the next member of the last label in the
list will have a value of NULL (0). Then all we need to do is check for this
value before going to the next label.

Let's look at a program that creates a linked list for the customer
labels. The program allows you to add a label, delete a label, or print all
the labels in the list. The pointer to the first label in the list is
first_label. First_label is declared as a global variable so that it can be
used by each of the functions: add_label, delete_label, and print labels. The
function add_label adds a label to the linked list. It makes use of the
function calloc to allocate memory for the label. The function delete_label
deletes a label from the list. It makes use of the function cfree to free the
memory used by the label. 1In the main function, we make use of the standard
function, toupper. This function requires a single character argument and
returns the character in upper case. Before compiling this program, be sure
to modify the label structure (add the member next) in the file named structs
created earlier.

- 102 -



Chapter 8

Example 8.5

#include "stdio"
#include "structs"
#include "labelio"

menu(option)
char *option;

{

Structures and Dynamic Memory

/* include standard header file */
/* include the structure definitions */
/* include the getlabel and putlabel functions */

puts ("\n\nA) add a label");
puts('"D) delete a label");
puts("P) print labels");
puts("Q) quit\n");

printf(" Enter option --> ");
scanf("%c%*c", option);

>

struct label *first label;

main()
{

char option;

for(;;) ( /* loop forever */
menu(&option);
switch (toupper(option)) {

case 'A'
case 'D'
case 'P'
case 'Q’
default

: add_label() ; break;

: delete label(); break;

: print_labels(); break;

: exit(0);

: puts{("¥%*% invalid option *%%'");

- 103 -



Structures and Dynamic Memory

add_label()

{
struct label *new_label, *current_ label;
new_label = calloc(l, sizeof(struct label));
if (new label != NULL) ¢
new label-D>next = NULL;
getiébel(new_label);
if (first_label == NULL) first_label = new_label;
else {
current_label = first label;
while (current label->next != NULL)
current_lagél = current_label->next;
current_label->next = new_label;
>
)
else printf('<<< Qut of Memory >>>\n");
}
delete label()
{
struct label *current_ label, *previous_label;
char first[15], last[15];
printf("Enter the name : '");
scanf("%s%s%*c", first, last);
current_label = first label;
while (current label != NULL) {
if (strcmpfcurrent_label—>name.last, last) == 0 &&
strcmp(current_label->name.first, first) == Q) break;
else {
previous label = current label;
current_Iébel = current_Iébel—)next;
b
b
if (current_label == NULL) puts('#*%*% Label not found *¥**");
else {
if (current_label == first_label)
first_label = first label-Dnext;
else
previous_label->next = current_label-Dnext;
cfree(current label);
)
}

- 104 -

Chapter 8



Chapter 8 Structures and Dynamic Memory

print_labels()
{
struct label *current_label;
current_label = first_label;
puts("\n");
while (current_label = NULL) ¢
putlabel(current_label);
current_label = current_label->next;

In the add_label function, we create a new label and add it to the list.
We must check to see if the list is empty (first label == NULL) before adding
the new label. 1If so, then the first label becomes the new label. Otherwise,
we must traverse the linked list while the current label is not the last label
in the list (current_label->next != NULL). When the current label is the last
label in the list, we link it to the new label (current_label->next =
new_label). Thus, the new label is added at the end of the linked list.

In the delete_label function, we prompt for the name of the label to delete
from the list. Starting with the first label in the list, we compare both the
first and last name entered to the name in each label. The strcmp function is
used to compare the names. We traverse the linked list while there are still
more labels in the list (current label != NULL). If the label to be deleted is
found, (strcmp returns 0), then we terminate the traversal through the list
(break). Current label will then point at the label to delete. Notice that as
we traverse the list, a pointer to the previous_label is maintained. We must
keep this pointer because when the current label is deleted, the
previous_label must be linked to the labels following the current label.
Otherwise the linked list will be disconnected. Before deleting the label, we
must first check to see if the label was found (current_label == NULL). If the
label was found, then we must check to see if it is the first label in the
list (current_label == first_label). If so, then first label must be made to
point to the second label in the list (first label = first_label->next).
Otherwise, the previous_label must be linked to the label that current_label
points to (previous_lab€1->next = current_label->next). Now we can delete the
label (cfree(current_label)).

You will notice that we did not sort the list of labels. The sort function
used earlier is not useful in this example since we eliminated the array of
pointers that it requires as an argument. A good way to sort the labels in
this example is to sort them as they are added to the list. The add_label
function currently adds all new labels to the end of the list. We can change
add label so that it inserts each label into the list at its proper location.
The following version of the add_label function sorts the labels as they are
added to the list.

- 105 -



Structures and Dynamic Memory Chapter 8

Example 8.6

add_label()
{ struct label *new_label *current label, *prev1ous label;
new_label = calloc(l, sizeof(struct label))
if (new_label != NULL) {
getlabel(new_label);
new_label->next = NULL;
if (first label == NULL) first label = new label;
else { - - -
current label = first label;
while (current label T= NULL &&
strcmp(new_ Tlabel->name.last,
current_label >name. last) > 0) <
previous_label = current_label;
current_label = current_label->next; }
if (current_label == first_label)
first_label = new_label;
else previous_label->next = new_label;
new_label->next = current_label;
>

)
else printf("<<< Qut of Memory >>>\n'");

Notice the changes that were made. We now traverse the label list while
not at the end of the list (current_label != NULL) and the last name in the
new_label is greater than the last name in the current_label (strcmp). Notice
that we added an extra variable, previous_label, to p01nt to the label
preceding the current label as we traverse the llst. The new label will be
inserted between the current_label and the previous_label when the while loop
terminates. Before doing so, we must check to see if the current_label is the
first label in the list. If so, then the first label becomes the . new_label
(first label = new _label). Otherwise we must point the previous_ label to the
new_ label (prev1ous label->next = new_label). Finally, we must point the new
label to the current label (new_label- —>next = current_label) to complete the

link.

This chapter has attempted to give you a good exposure to the use of
structures and dynamic memory allocation. You have seen arrays of structures
and pointers to structures. The two standard dynamic memory functions, calloc
and cfree were discussed. You were also shown how to implement a singly
linked list. There are many uses for structures and dynamic memory
allocation.

- 106 -



Chapter 9

File 1/0

All the input and output up to this point has been done using the standard
files, stdin and stdout. These two files, along with stderr, are
automatically opened before a program begins execution. All three are mapped
to the terminal when they are opened, stdin to the keyboard, stdout and stderr
to the screen. We have seen three input functions that use stdin (getchar,
gets, and scanf) and three output functions that use stdout (putchar, puts,
and printf). The System Implementation Manual discusses how the stdin and
stdout files may be remapped when a program is executed. Either may be mapped
to a different device or to a disk file. The stderr file however, is always
mapped to the screen and cannot be changed. You can do quite a lot with just
these three files. But when your program needs more than one input file or
more than two output files, you need the ability to create your own files.

The standard function, fopen, is used to open your own files. It requires
two string arguments. The first argument specifies the physical name of the
file. (The System Implementation Manual decribes the device names that may
also be used). The second argument specifies the mode in which the file is
opened. The value returned by the fopen function is a pointer to the file.
The following is the typical form of a call to the fopen function.

fp = fopen(name, mode);

The mode argument can have one of three values, each of which is a one
character string. The possible values are '"r'", "w", or "a". The "r'" mode
opens the file for reading. The file must exist if the "r" mode is
specified. Otherwise, the fopen function will return NULL. When a file is
opened for reading, input starts with the first character in the file. The
"w" mode opens the file for writing. The file does not have to exist if the
"w'" mode is specified. If the file does exist, the contents will be
destroyed. When a file is opened for writing, output starts at the beginning
of the file. The "a'" mode opens the file for appending. This is equivalent
to the "w" mode except that output starts after the last character in the
file, rather than at the beginning of the file. If the file does not exist,

then this mode has exactly the same effect as the "w' mode.

The only I/0 functions that you've seen up to now that allow a file to be
specified are getc and putc. They were used back in chapter 5 with the
standard files, stdin and stdout. The getc and putc functions are the generic
versions of getchar and putchar. The getc and putc functions do the same
thing but are more general, allowing you to specify the input or output file.

- 107 -



File 1/0 Chapter 9

There are also generic versions of the scanf and printf functions. The
standard function, fscanf, is equivalent to scanf except that it accepts an
extra argument to specify the input file. The standard function, fprintf, is
equivalent to printf except that it accepts an extra argument to specify the
output file. The following table shows these I/0 functions with there generic
equivalents.

getchar() is equivalent to getc(stdin)
putchar(c) is equivalent to putc(c, stdout)
scanf(...) is equivalent to fscanf(stdin, ...)
printf(...) is equivalent to fprintf(stdout, ...)

Now that you know about the fopen function, you can open your own files and
perform I/0 using the getc, putc, fscanf, or fprintf functions. Rather than
using the standard files, stdin and stdout, you will use the the file pointer
returned by the fopen function. A variable must be declared to store the
returned file pointer.

The "stdio" file defines a type named FILE using a feature of C.that has
not been discussed yet. This is the typedef, which stands for type
definition. A type definition simply defines a name that can be used to
declare variables. This name can then be used just like any of the predefined
data types such as char, int, float, etc. So in effect, typedef allows you to
define your own data types. To define a type, you use the keyword typedef,
followed by a predefined data type or your own defined data type, followed by
the name by which the data type will be referenced. The following are
examples of type definitions.

typedef char CHARACTER;
typedef int INTEGER;
typedef float REAL;
typedef struct {
char last[15];
char first[15];
} NAME;

User defined data types are typically given upper case names to distinguish
them from the predefined data types. We can now use the above type
definitions to declare variables.

CHARACTER c; /* equivalent to char «c¢; %/
INTEGER  1i; /* equivalent to int i; */
REAL r; /* equivalent to float r; */
NAME name ; /* equivalent to struct {

char last[15];
char first{15];
} name; */

The type definition named FILE in the "stdio" file is used to declare
pointers to files. Let's look at an example program that copies one file to

- 108 -



Chapter 9 File I/0

another using getc and putc and our own file variables.

Example 9.1

#include "stdio™

main()

{
FILE *input_file, *output_file;
char input name[l15], output name[l15];
int c; - -

puts("*%* File Copy Program *¥%'");

printf("Enter the name of the input file : ");
scanf("%s'", input _name);
printf("Enter the name of the output file : ");
scanf("%s", output name);

input_file = fopen(input_name, "r');

if (input_file == NULL) {
puts("¥*¥% Can't open input file *¥¥'");
exit(0);

b

output_file = fopen(output_name, "w");

if (output_file == NULL) {
puts("*¥¥ Can't open output file *¥x%");
exit(0);

b

while ((c = getc(input_file)) != EOF)
putc(c, output_file);

Notice that we open the input file using mode "r' and the output file using
mode "w". We could have used mode "a" for the output file if we wished the
input file to be appended to the end of an existing file.

There are two standard functions that are slight variations of the gets and
puts functions. These are naturally called fgets and fputs since both have a
file pointer as one of the arguments. Both gets and fgets read a string until
the end of line (newline character '\n') is encountered. The difference
between the two functions is that fgets includes the newline character as part
of the string while gets does not. Fgets also has an argument to specify the
maximum number of characters that will be read if an end of line is not
encountered. Both puts and fputs output a string of characters until the NULL
character is encountered. The difference between puts and fputs is that puts

- 109 -



File I/0 Chapter 9

outputs a newline character at the end of the string while fputs does not.
Both gets and fgets return NULL when the end of file is detected or an error
occurs during input while puts and fputs return EOF if an error occurs during
output,

With the exception of the handling of the newline character, the following
function calls are equivalent. Infinity is used to represent an infinite
number.

gets(g) is equivalent to fgets(s, infinity, stdin)
puts(s) is equivalent to fputs(s, stdout)

Let's modify example 9.1 so that it uses fgets and fputs to perform the
file copy. All the other functions used in example 9.1 will be converted to
their generic counter parts.

Example 9.2

#include "stdio"”
#define BUFSIZE 81
main()
{
FILE *input_file, *output file;
char input name[15], output name[l5], buffer[BUFSIZE];
int c,
fputs("*** File Copy Program *%**\n", stdout);

fprintf(stdout, "Enter the name of the input file : ");
fscanf(stdin, "%s'", input_name);
fprintf(stdout, "Enter the name of the output file : ");

fscanf(stdin, '"'%s'", output name);
s s put_

input file = fopen(input name, "r");

if (input_file == NULL) {
fputs("*** Can't open input file *%*' gtdout);
exit(0):

H

output_file = fopen(output_name, "w');

if (output file == NULL) {
fputs("*** Can't open output file ***" stdout);
exit(0);

b

while (fgets(buffer, BUFSIZE, input_file) != NULL)
fputs(buffer, output_file);

Now let's modify example 8.4 to make it a little more versatile. Example

- 110 -



Chapter 9 File I/0

8.4 is a program that reads labels from the keyboard and then sorts and prints
the labels on the terminal screen. Our next example will modify this program
so that the labels may optionally be read from a file and the sorted labels
written to a file. The only part of example 8.4 that will remain unchanged is
the sort function. You will notice the use of another standard C function,
strlen. The strlen function takes a single string argument and returns the
length of the string.

Example 9.3

#define MAX 100
#include "stdio" /% include standard header file */
#include "sort" /* include the sort function */

typedef struct {

char last[15];
char first[15];

} NAME;

typedef struct {

char street[25];
char city[15];
char state[15];
long zip;

} ADDRESS;

typedef struct {
NAME name;
ADDRESS address;
» LABEL;

getlabel(fp, customer)

FILE *fp;
LABEL *customer;
{
if (fp == stdin) printf("Enter Name ")

fscanf(fp, "%s%s%*c", customer->name.first,
customer—>name. last);

if (fp == stdin) printf("Enter street ")
fgets(customer->address.street, 25, fp);
if (fp == stdin) printf("Enter city, state & zip : ");

return fscanf(fp, "%s%s%ld%*c", customer->address.city,
customer->address.state,

&customer->address.zip);

- 111 -



File 1/0 Chapter 9

putlabel(fp, customer)

FILE *fp;
LABEL *customer;
{

fprintf(fp, "\n%s %Zs\n%s%s %s %1d\n",
customer->name.first,
customer~>name.last,
customer->address.street,
customer->address.city,
customer->address.state,
customer->address.zip);

- 112 -



Chapter 9
main()
{
int i, number = 0;
char more = 'Y', *names[MAX], in_name[15], out name[l5];
FILE *in file, *out file;
puts (MekE Label Sorting Program Fkkit) o

>

puts('press the enter key to map files to terminal\n'");
printf("Input file containing unsorted labels : ");
gets(in_name) ;

printf("Output file to contain sorted labels : ");
gets(out_name);

if (strlen(in_name) == 0) in_file = stdin;

else {

in_file = fopen(in_name, "r'");
if (in_file == NULL) {
printf("Can't open input: %s", in _name); exit(0);

7
)
if (strlen(out_name) == 0) out_file = stdout;
else {
out file = fopen(out name, '"w');
if (out_file == NULL) {
printf("Can't open output: %s", out name); exit(0);
)
)
while (more == 'Y' || more == 'y') {
if (number < MAX)
names[number] = calloc(l, sizeof(LABEL));
if (names[number] != NULL) {
if (getlabel(in_file, names[number]) == EOF) {
cfree(names{number]); break;
)
++number;
if (in_file == stdin) {
printf('"™More labels? (Y/N): ");
more = getchar();
),
)
else {
print £(""<<< Qut of Memory >>>\n");
break;
>
b4
else {
printf£(""<<< Maximum No. of Labels is Z%Zd >>>\n", MAX);
break;
)
)

sort{names, number);
for (i=0; i<number; i++) putlabel(out_file, names[i]);

First of all, you should notice that we changed all the structure

- 113 -

File I/0



File I/0 Chapter 9

definitions to use typedef. Next we added an extra argument to both the
getlabel and putlabel functions, a file pointer.

Inside getlabel, we check to see if the input is coming from stdin (the
keyboard). If so, then we provide input prompts for the user. If the input
is coming from a file, these prompts are unnecessary. Also notice the
addition of the return statement with the last scanf function call. Now that
the getlabel function can get its input from a file, we must detect when the
end of file has been reached. The scanf function normally returns the number
of items successfully input each time it is called. However, if the end of
file is detected before all the input is complete, scanf returns EOF. The
return statement specifies that the value returned by scanf will also be
returned by the getlabel function.

Inside putlabel, we eliminated a newline character in the format string.
Since the getlabel function uses fgets to input the street, the street array
already has a newline character at the end of the string.

In the main function, the first order of business is to prompt the user for
the input and output file names. We allow the user to specify input from the
keyboard by merely pressing the enter (return) key. The screen may be
specified for the output by merely pressing the enter key as well. Otherwise,
the user may type in a valid file or device name for either the input or
output file. We then use the strlen function to determine whether or not the
user entered a file name or merely pressed the enter key. If the in_name or
out name has a length of 0, then the user merely pressed the enter key. 1In
this case we map the input to the keyboard (in file = stdin) and the output to
the screen (out_file = stdout). Otherwise, we use the fopen function to open
the files with the user supplied names. Note that we check to see that the
files are successfully opened. 1If the files are not successfully opened, we
display an appropriate message and exit the program.

The input file is used to collect the labels. If the input is coming from
a file, the input process is terminated when the end of file is reached.
Notice that on each call to the getlabel function, the returned value is
compared to EOF. When EOF is returned by getlabel, we free the memory
allocated to the last label (cfree(names[number]) since it is not used and
terminate the loop. If the input is coming from the keyboard, we prompt the
user after each label is entered. When the user answers this prompt with a
character other than 'Y' or 'y', the loop is terminated. Therefore, we have
two methods of terminating the while loop, depending on where the input is
coming from.

For our last example, we will illustrate the use of the append mode with
fopen. We will also introduce the standard function for closing files,
fclose. The append function in our program accepts two file names as
arguments, opens the two files, and then appends the first file to the
second. Notice that these two arguments are declared as pointers to char.
They could have been declared as arrays, but since we do not need to access
the individual array elements, pointer to char works equally as well. At the
end of the append function, the two open files are closed using the fclose
function. The fclose function requires a single file pointer as an argument
and closes the file to which it points. All open files are closed

- 114 -



Chapter 9 File 1/0

automatically when a program terminates. However, fclose provides a means of
explicitly closing files. It is a good practice to close a file when it is no
longer needed. If a program abnormally terminates, any output files that are
open may be lost. There is also a limit to the number of files you can have
open at any one time. This limit is defined by the MAXFILES constant in the
"stdio" file. By using fclose, you may free a file pointer for use with
another file.

Example 9.4

#include "stdio"
main()
{

char input_pame[lS], output_name[lS];

puts("#¥%* Append File Example *¥%¥');

fputs("Enter the input file name : ", stdout);

gets(input name);

fputs("Enter the output file name: ", stdout);

gets(output_name);

if (append(input name, output name) == NULL)
puts("Dismal Failure");

else

puts("Extremely Successful™);



File 1/0 Chapter 9

append(namel, name2)

char *namel, *name2;

{
#define FAILURE 0
f#define SUCCESS 1
FILE *input, *output;
int c¢;

input = fopen(namel, "r'");

output = fopen(name2, "a");

if (input == NULL) ¢
fprintf(stderr, "Can't open input: %s\n", namel);
return FAILURE;

>

if (output == NULL) {
fprintf(stderr, "Can't open output: %s\n", name2);
return FAILURE;

>

while ((c = getc(input)) != EOF) putc(c, output);

fclose(input);

fclose(output);

return SUCCESS;

)

Well, this pretty well does it for the tutorial. I hope that you have
learned enough to start feeling comfortable with the language. The only way
to really feel comfortable is to write a lot of programs. The more you write,
the easier it becomes. The C language provides an infinite number of ways to
accomplish your programming tasks and this tutorial has presented only a few
of them. The Reference Manual describes many more features of the language
that were not even mentioned here. There are also a large number of functions
that were not discussed. The Reference and System Implementation Manuals
describe all of the functions provided with this implementation of C. The
System Implementation Manual describes those functions which are machine
dependent while the Reference Manual describes those that are machine
independent.

- 116 -



Index

!, not operator 36

!=, not equal operator 29

" " string delineator 5
f#define 19

#include 51

%, modulo operator 11

%d, integer format 10

%“e, conversion specification 49
%f, floating format 13

%x, conversion specification 49, 64
&&, and operator 36

&, address-of operator 17

* operator 63

* guppression character 37
*, multiplication operator 11
*/, ending comment 6

++, increment operator 25

+, addition operator 11

, comma operator 38

-, subtraction operator 11
-, unary minus 8

--, decrement operator 25
/*, beginning comment 6

/, division operator 11

;, statement terminator 4

<, less than operator 29

{=, less than operator 29

=, assignment operator 9

== yg = 35

=, equality operator 29
greater than operator 29
, greater than operator 29
:, conditional expression operator 57
\x, escape sequence 6
appending 107

arithmetic operators 11
array 65

array elements 65, 65

array of characters 67

array of pointers 72

array, base of 66

assignment operator 25
associativity 21

auto storage class 81

block 4

break statement 55

call by value 17, 45

calloc 100

IRV AR VAN |
-

- 117 -



case label

cfree

100

58

char data type

char declarations
character constant

character format

comment

compound statement
conditional statements nested 39

6

constants 7

contents-of operator
continue statement
control statement
control statement nesting 33

cos 75

data types

declarations, integer variables
default label

do statement

dynamic memory 99

58

39

else statement

EOF 52

escape sequence

example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example
example

1.2

. « s s e e e e
ONOUVMP WM WN U W

. s » . . .

. . . » . .

.
P00 SO UL PN e B WM e O

.

ol

-

AUV UVUVUVEDRPRPPRPEWOWWWWWWWWRNRNNNRNDDN
.

4
5
9
13
16
18
20
22
23
26
29
31
32
33
35
37
38
39
40
41
45
47
48
51
53
54
55
56
57
58
59
60
64

~ 118 -



example 6.2 65
example 6.3 66
example 6.4 68
example 6.5 69
example 6.6 71
example 6.7 72
example 6.8 75
example 6.9 76
example 7.1 82
example 7.2 84
example 7.3 86
example 7.4 88
example 7.5 - file 1 89
example 7.5 - file 2 90
example 8,1 92
example 8.2 96
example 8.3 99
example 8.4 101
example 8.5 103
example 8.6 106
example 9.1 109
example 9.2 110
example 9.3 111

example 9.4 115

exit function 79

extern storage class 81
fclose 114

fgets 109

floating point data type 11
flow of control 29, 41
fopen 107

for statement 37

fprintf 108

fputs 109

fscanf 108

function arguments 17, 43
function call 4, 17
function call in expressions 42
function declaration 47

getc 107
getc 52
getchar 54
gets 69, 69

global variables 81

goto statement 56

heap 100

if statement 30

include files 51
indirection operator 63
initialization, array 78
integer constant 8

log 75

logical operators 36
long integer 12

member of operator, . 92
member of, structure 92

- 119 -



nested structures 94
null statement 34
operator precedence 21
pointer addressing 70
pointer data type 63
pointer initialization 63
pointer to function 74
pointers 63

postfix operator 25
prefix operator 25
printf 6

printf, arguments 10
putc 107

putc 52

putchar 54

puts 69

reading 107

relational operators 29
return statement 44
scanf 16

scope of global variable 81
scoping 81

separate compilation 83
sin 75

sizeof operator 100
stack 100

static function 88
static storage class 85
static, internal 87
stderr 53

stdin 15, 53

stdout 15, 53

storage class 81

storage class, extern 81
storage class, static 85

strcat 67
strcpy 67
string 67

structure declaration 91
structure pointer operator, -> 95
structure, pointer to 95
structures 91

stucture names 93

switch statement 58

symbolic constant 19

toupper 102

truncation 22

type conversion, automatic 22
typedef 108

unsigned integer 12

variables 7

void 47

while statement 32

whitespace 7

writing 107

|1, or operator 36

- 120 -



Table of Contents

Chapter 1 Program Elements

1.1 Identifier
1.2 Constants

1.2.1 Integer Constants

1.2.2 Floating Point Constants
1.2.3 Character Constants
1.2.4
1.2.5

Symbolic Constants
String Constants

Reserved Words
Operators
Alternate Symbols
Comment
Semicolon

Brace
Terminology

N e )
. .
O 0o~ Oy Ut W

Chapter 2 Program Structure
2.1 Functions
. Function Header

1.1
.1.2 Argument Declarations
1.3 Function Body

N RN

2.2 Local Variables
2.3 Global Variables

Chapter 3 Basic Data Types and Declarations

3.1 Character Variables
3.2 Integer Variables

3.2.1 Short Integers
3.2.2 Long Integers
3.2.3 Unsigned Integers

°

3.3 Floating Point Variables
3.3.1 Double Precision
3.4 Storage Classes
. Auto Variables

3.4.1
3.4.2 Extern Variables
3.4.3 Static Variables

N

Wi d WM

— 0 00 00~ O

11
13
13
14

15
16

19

19
20

20
21
22
22
23
24
24

25
27



3.4.4 Register Variables

3.5 Initialization of Basic Data Types
3.6 Type Definitions

Chapter 4 Basic Operators and Expressions

4.1 Operator Precedence and Grouping
4.2 Assignment Operator
4,3 Arithmetic Operators

.1 Properties of + Operator
.2 Properties of - Operator
.3 Properties of * QOperator
4 Properties of / Operator
5 % Operator

.3
.3
.3
.3.
3

BRI S S

.3.5 Properties of

4.4 Relational and Equality Operators

4.1 Properties of < Operator
4.2 Properties of <= Operator
4.3 Properties of > Operator
.4.4 Properties of >= Operator
4.5 Properties of == QOperator
4.6 Properties of != Operator

4.5 Logical Operators

4.5.1 Properties of && Operator
4.5.2 Properties of || Operator
4.5.3 Properties of ! Operator

4.6 Type Conversions
Chapter 5 More Operators and Expressions
5.1 Increment and Decrement Operators

5.1.1 Properties of ++ Operator
5.1.2 Properties of -- Operator

5.2 Bitwise Operators

5.2.1 Properties of ~ Operator
5.2.2 Properties of >> Operator
5.2.3 Properties of << Operator
5.2.4 Properties of & Operator
5.2.5 Properties of ~ Operator
5.2.6 Properties of | Operator

.

Assignment Operators

5.4.1 Properties of & Operator
5.4.2 Properties of * Operator

5.3
5.4 Address Of and Contents Of Operators

28

29
29

31

31
34
34

35
35
36
36
37

37

39
39
39
39
39
39

40
40
41
41
42
43
43

44
44

46

46
47
48
48
49
50

51
53

53
54



5.5 S8izeof Operator

5.6 Cast Operator

5.7 Comma Operator

5.8 Structure Member Operator
5.9 Structure Pointer Operator
5.10 Conditional Expression
5.11 Constant Expressions

5.12 Sample Expressions

.

Chapter 6 Functions

6.1 Function Definition

1 Function Names

2 Function Types

.3 Function Arguments
4 Function Body

6.2 Nested Blocks

6.3 The Main Function
6.4 Static Functions
6.5 Calling Functions
6.6 Function Pointers
6.7 Recursion

Chapter 8 Structures and Unions

8.1 Structures

Defining Structures
Referencing Structures

S
Pointers to Structures
Arrays of Structures
Bit Fields

8.2 Unions

tructure Initialization

54
55
56
56
57
58
59
59

61

61

62
62
63
63

65
65
66
67
67
68

71

71
72
74
75

77

77

77
80
80
81
82
83

84



Chapter 9 Statements

9.1 Simple and Compound Statements
9.2 Conditional Statements

9.2.1 if
9.2.2 else
9.2.3 switch

break

continue

goto and labels
return

null

O WO 0w w0
e s e e .
00~ Oy Lt

Chapter 10 Input and Output
10.1 Opening and Closing Files

10.1.1 fopen
10.1.2 fclose

10.2 Character 1/0

10.2.1 getchar
10.2.2 putchar
10.2.3 getc
10.2.4 putc
10.2.5 ungetc

10.3 String I/0

10.3.1 gets
10.3.2 puts
10.3.3 fgets
10.3.4 fputs

10.4 Formatted T1/0
10.4.1 Input Format Strings

10.4.2 Output Format Strings
10.4.3 scanf

87

87
87

87
88
89

90

90
91
92

92
93
94
95
95

97
97

98
99

100

100
101
101
102
103

104

104
105
105
106

107
108

111
115



printf
fscanf
fprintf
sscanf
sprintf

e
OO OO
ERRR NS
0~ O Ut

Chapter 11 Standard Functions

11.1 Character Functions

11.1.1 isalpha
11.1.2 isdigit
11.1.3 isspace
11.1.4 islower
11.1.5 isupper
11.1.6 tolower
11.1.7 toupper

11.2 String Functions

11.2.1 strlen
11.2.2 strcpy
11.2.3 strecmp
11.2.4 strcat
11.2.5 strsave

11.3 Dynamic String Functions

11.3.1 stods
11.3.2 dstos

11.4 Conversion Functions
11.4.1 atoi
11.4.2 atof
11.4.3 itoa
11.4.4 ftoa

11.5 Dynamic Memory Functions

11.5.1 calloc
11.5.2 cfree

11.6 Math Functions

11.6.1 abs
11.6.2 atan
11.6.3 cos
11.6.4 exp
11.6.5 log
11.6.6 sin
11.6.7 sqr
11.6.8 sqrt

11.7 Termination Functions

116
117
118
119
121

123
123

123
124
125
125
126
127
128

128

129
129
130
131
132

133

133
134

135

135
136
137
137

139

139
141

142

142
142
143
144
144
145
145
146

147



11.7.1 exit 147

11.7.2 _exit 148
Chapter 12 Compiler Controls 149
12.1 Preprocessor Statements 149
12.1.1 #include 149
12.1.2 #define 150
12.1.3 #undef 151
12.1.4 #ifdef 151
12.1.5 #ifndef 152
12.1.6 #if 153
12.1.7 #else 154
12.1.8 #line 155

12.2 Compiler Options 156
12.2.1 CONVERT Option 156
12.2.2 LIST Option 157
12.2.3 LISTMACRO Option 158
12.2.4 NESTCMNT Option 158
12.2.5 PAGESIZE Option 159
12.2.6 SIGNEXT Option 159
12.2.7 UPPERCASE Option 160
12.2.8 WIDELIST Option 161
12.2.9 ZERO Option 162
Appendix A Error Messages 163
A.l1 Compiler Error Messages 163
A.2 Runtime Error Messages 165
Appendix B ASCII Table 169

Appendix C Differences from Kernighan and Ritchie 173



Chapter 1

Program Elements

1.1 Identifier

An identifier serves to denote the program name, a constant, a type, a
variable, or a function. An identifier is made up of a sequence of letters
and digits. It has the following characteristics:

1. The first character must be a letter.
2. The underscore (_) and dollar sign ($) count as letters.

3. Upper and lower case letters are different (i.e. Letter does not equal
LETTER, which does not equal letter, etc.).

The length of an identifier is arbitrary but only the first eight (8)
characters are significant to the compiler. For example, student name and
student_grade would be taken to be identical because the compiler discards all
characters past the eighth character. The identifier cannot contain blanks or
span (cross) a line boundary.

By default, the compiler will generate upper case function names in the
object code even if lower case is used in the source file. The compiler
option /*$NO UPPERCASE*/ may be used to allow lower case function names.

Examples:
student~-name incorrect, hyphen (-) not allowed
Net profit correct
square root incorrect, embedded blank
I correct
7 _card_stud incorrect, begins with a digit
seven card_stud correct
SQUAREROCOT correct
a2653 correct
July 28 1982 correct



Program Elements Chapter 1

1.2 Constants

Constants can be integer, floating point, character, or string.

1.2.1 Integer Constants

An integer constant is a sequence of digits. Normally, integer constants
are specified in decimal (base 10). An integer may be specified in octal (base
8) by starting the digit sequence with a 0. Octal is often used when the
integer is representing a specific bit pattern. An integer may be specified
in hexadecimal (base 16) by preceding the number with Ox or OX. Hexadecimal is
typically used when the integer is representing a memory address.

Integer constants may be allocated storage of type int, unsigned int, or
long int, depending on the size and/or sign of the constant. Storage is

allocated based on the following rules.

1. 1If the constant is in the range of type int, then it is allocated
storage of type int.

2. Else the constant is allocated storage of type long.
See the System Implementation Manual for the ranges of these types.

An integer constant may be forced to type long by appending 1 (the letter
ell) or L to the digit sequence.

Examples:
58 correct, decimal
072 correct, octal
0x5a correct, hexadecimal
FACE incorrect, does not begin with 0x or 0X
092 incorrect, octal numbers cannot have a 9
-265 correct, decimal
1,223 incorrect, cannot have a comma in an integer
423L correct, long decimal
0x9A7EL correct, long hexadecimal
086L correct, long octal



Chapter 1 Program Elements

1.2.2 Floating Point Constants

A floating point constant may contain several parts: a whole part, a
decimal point, a fractional part, an e or E, and an exponent. The whole part,
fractional part, and exponent are digit sequences. The whole part and the
exponent may optionally be preceded by a + or - sign. All floating point
constants are taken to be double precision.

There are times when using all the parts of the floating point constant is
cumbersome. C allows some shorthand notations. For example, we could write
3.102e+3 as a floating point constant. However, C also accepts 3102. or
3.102e3 or 0.3102E4 to produce the same value for the floating point
constant. Floating point constants do have some restrictions on format.

1. Either the whole or the fractional part may be missing, but not both.

2. Either the decimal point or the E or e may be missing, but not both.

Examples:
-638. correct
0.638e-2 correct
638 incorrect, both . and e (or E) are missing
638e-7 correct
E4 incorrect, both integer and fractional part missing
245,1E6 correct
2,451E+6 incorrect, comma not allowed in floating point
638E7. incorrect, exponent not an integer

1.2.3 Character Constants

A character constant is a character enclosed in single quotes ('). For
instance, 't', 'K', and 'b' are all examples of character constants. The
value of the character constant is the numerical value of the character in
ASCII (see table in the Appendix). The character constant 't' has the
numerical value of 116 (decimal), 164 (octal), or 74 (hexadecimal). Certain
non- graphic characters which are not printable may be represented by escape
sequences as shown in the following table.



Program Elements Chapter 1

Name Escape Sequence
newline (NL) \n or \N
horizontal tab (HT) \t or \T
backspace (BS) \b or \B
carriage return (CR) \r or \R
line feed (LF) \1 or \L
form feed (FF) \f or \F
backslash (\) W\
single quote (') \!
double quote (') \"
null character (NUL) \O
bit pattern \ddd

The escape \ddd is a backslash (\) followed by 1 to 3 octal digits which
represent the value of the character constant. For example, the 't' from
above could also be expressed as '\164'. The null character is a special case
and represents the character whose value is 0 (zero). If the character which
follows the \ is not one of those in the table, the \ is ignored. 1In all
cases, the escape sequence is taken as one character even though 2 or more
characters may be used to represent it.

Examples:
! correct
"\122' correct (this is the same as 'R')
"p" incorrect, must be enclosed in single quotes
'the' incorrect, must be a single character
Q' correct
"\n' correct (this is the newline character sequence)
"\0' correct (this is the NULL character)

1.2.4 Symbolic Constants

A symbolic constant is used to give a descriptive name to a program
constant. The name is then used throughout the program in place of the
constant itself. This makes it easy to change the value of the constant at
some latter time by confining its occurrence to one place in the program. The
preprocessor macro, #define, is used to define a symbolic constant. This
macro takes two strings as its parameters. The first string is the symbolic
name for the constant and the second is the actual text to be used wherever
the symbolic name appears in the program. The compiler replaces all unquoted
occurrences of the symbolic name by the corresponding defined replacement
text.

Suppose we wanted to define two constants where 1 is on and 0 is off. The
following might be used.



Chapter 1 Program Elements

#define ON 1
#define OFF O

This defines symbolic names for the constants 1 and 0. Notice there is no
semicolon (;) at the end of the #define statement. This is because the
semicolon would be taken as part of the replacement text. Suppose the
following constant was defined.

#define SIX 6;

Then each occurrence of SIX would be replaced by 6; which is probably not
what was intended. Note that the symbolic constant is written in uppercase
letters to make it is easy to distinguish from other program identifiers.
Also note that the replacement text is not limited to numbers. Any string of
characters may be used.

Examples:
#define  MAX_ COLUMNS 80
#define  MAX_ROWS 24
#define  NAME Mary Jane
f#define  COST 9.95

1.2.5 String Constants

A string constant is a sequence of zero (0) or more characters enclosed in
double quotes ("). A string constant is of the same type as an array of
characters. The double quotes (") serve as delimiters and are not part of the
string itself. The complier places a null byte (\0) at the end of every
string to mark the end of the string. If a double quote (") is part of the
string, it must be preceded by a backslash (\). The escape sequences shown for
character constants may be used in a string since the escape sequences
represent characters. A string with 0 (zero) characters is said to be a null
string and is represented as "'".



Program Elements Chapter 1

Examples:
"This is a string." correct
"This is a '"string"." incorrect, double quotes surrounding
string are not preceded by \

"This is a \"string\"." correct

"\103\122\124" correct (same as "CRT")

"I am a 'C' wizard." correct

"I am a 'C' wizard. \n" correct

i correct (null string)
" correct, string containing one
blank character (not the same as ' ')
A string constant may span more than one line by terminating the string
with the (\) character.

Example:

"This is a string constant that spans)
more than one line."

1.3 Reserved Words

The following words have special meaning to the compiler and are reserved.
They cannot be used as identifiers. The reserved words may be entered in
upper or lower case. Since these words may be in any case, then AUTO, Auto,
and auto are all taken to be reserved words.

auto double if static
break else int struct
case entry long switch
char extern register typedef
continue float return union
default for short unsigned
do goto sizeof void
while



Chapter 1

1.4 Operators

Program Elements

Operators in C consist of a set of predefined symbols. These predefined

symbols vary in length from one to three characters.
match the longest possible symbol.

and 2, and not as b - (-2).

+ -
< >
{ b
. ->
= 4=
&= ~=

/ %
>= <KL
) [
Fo= /=
++ -

1.5 Alternate Symbols

>>

The C compiler will

For example, b--2 will be matched as b—-

L=

/*

Since some keyboards may not contain all the special symbols used for C
operators, a set of alternate symbols has been defined. These alternate
symbols may be substituted for the normal symbols if necessary.

C Symbol

?

P et e Nl PP s ey

Alternates

]
(@
@)
(#
#)
/!
//
/1!
@



Program Elements Chapter 1

1.6 Comment

Comments are used to document the code used in a program. A comment is a
sequence of characters beginning with /* and ending with */. All characters
that fall between these two symbols are ignored by the compiler.

Comments may begin and end anywhere on a line as long as they don't enclose
part of the program itself. Comments may also cross line boundaries.
Normally, comments may not be nested. That is, a comment may not appear
inside another comment. However, there is a compiler option that can be
turned on to allow nested comments.

Examples:

/* fed and state income taxes */
/* withheld from this paycheck */
—-—correct

/* retirement contribution */
-—correct

/* One small step for (:, one iant 1eap for me. ’L‘/
g
——correct

/* I am an old C dog because I write /*comments*/. %/
--incorrect unless compiler option for nesting is used

/* federal and state income taxes

withheld from this paycheck */
—-~correct because comments can cross line boundaries

1.7 Semicolon

The semicolon (;) is used by C as a statement terminator, not as a
statement separator. Any expression followed by a ; becomes a statement.



Chapter 1

1.8 Brace

Program Elements

The braces { and } are used in C to group declarations and statements
together into blocks or (compound statements). This makes the compound
statements equivalent to a single statement, much the same as the begin and
end in Pascal. Because braces are not statements, semicolons are never placed
after a right brace (}). C allows declarations to be made in any block
immediately after the left brace ({).

Example:

if (x < y) {
X += y; /*
printf("%d %d
)
else {
y += x; /*
printf("%d %d

this
\nll R

this
\nll

is
x’

is
X’

a compound statement */
v);

a compound statement */
y);



Program Elements Chapter 1

1.9 Terminology

The following is a list of terms which will be used in the remainder of the
reference manual.

whitespace A blank, tab, or newline character.

expression An expression consists of an identifier or a sequence of
identifiers and operators.

object An area of memory where data may be manipulated.

scalar A simple (single) variable. That is, a variable that is
of type int, float, double, long, short, unsigned, char,
or pointer to one of those types (see Chapter 3 for more
information on data types). A scalar is not a composite
of several variables. Arrays and structures, for example,
are not scalars.

lvalue An identifier or expression which may appear on the left
of an assignment operator (left of an equals sign). An
lvalue is an expression which refers to an object. For
example, a variable or a pointer to a variable are both
lvalues. They are objects where data may be stored.
However, expressions such as a + b or sum(d,e) are not
lvalues because they do not refer to a location in memory
where data may be stored.

syntax Rules for writing a computer language that specify how to
spell words and punctuate the statements--similar to
grammar in the English language.

rvalue An expression which may appear on the right side of an
assignment operator.



Chapter 2

Program Structure

2.1 Functions

C programs are composed of functions. A function is a program module that
performs some specific task for the program. Typically, a C program will
consist of many small functioms, each performing a very specific task.

At a minimum, a C program must contain a function called "main". Program
execution begins with the "main" function.

The following example shows the minimum complete C program. It is a
program that does nothing.

main()
{
)

Each function is a stand-alone utility that can be called to perform its
specified task. A typical program structure is represented in the following
block diagram. The outer block represents a source file that contains C
functions,

- 11 -



Program Structure Chapter 2

! !
! !
! e + !
! ! main() ! !
! !¢ ! !
! ! /*required once per program*/ ! !
! ') ! !
! o e o e e e + !
! !
! o o e e e + !
! ! function 1(0) ! !
! g ! !
! ! /*optional#*/ ! !
root ) oo
! o e e o o e + !
! : !
! !
! !
z !
! e e e e + !
! ! function n() ! !
! P { ! !
! ! /*optional¥®/ ! !
! 'y ! !
! o o ot o + !
! !
T +

Although it is possible to put all of the C source code for a program in
function "main", splitting the program into smaller, logical units is good
programming practice. It makes the program easier to read, understand, and
maintain. For large programs, it is also a good practice to split the program
into several different source files, each containing one or more functions.

Of course, only one of the source files should contain the function called
"main". Individual source files may be compiled separately. Therefore, when a
function is modified, it is only necessary to compile the source file that
contains the modified function.

A function can call another function. A function can even call itself
(known as recursion). However, a function cannot define another function
within its boundaries. In other words, a function definition cannot be
nested. That is why the block diagram above shows non-overlapping function
blocks. The following program structure is not allowed.



Chapter 2 Program Structure

illegal

. e b A Suw S G bee  bese e

A function definition is itself composed of several sections: a function
header, argument declarations, and a compound statement.

2.1.1 Function Header

The function header is used to name the function, determine the type (int,
float, char, etc.) of the value the function returns, and to list the
variables (arguments), if any, which are used to store data passed to the
function. The form of a function header is as follows.

data-type function-name(argl, arg2, ... argn)

Example:
char address(name, street, city, state, zip)

The above example defines a function named "address" which has 5 arguments
and returns a value of type char (character). If the type-specifier (in this
case char) is missing, then the default type of the returned value is int
(integer).

2.1.2 Argument Declarations

The arguments, enclosed in parentheses, form what is known as the argument
list. The argument list is optionmal. When a function requires no arguments,
the argument list is represented as "()". If a function does require
arguments, the data type of each argument should be declared. An argument
that is not declared is assumed to be of type int. The form of a declaration
is as follows:

data-type varl, var2, ...varn;

The declarations for the arguments of a function immediately follow the
function header.



Program Structure Chapter 2

Example:
char address(street, city, state, zip)
char street[], city[], state[];
long zip;

2.1.3 Function Body

The body of the function is a compound statement (statements enclosed by
braces, { and }). The body of the function contains the statements that
perform the specific task of the function,

Example:
char address(street, city, state, zip)
char street[], city[], state[];
long zip;
{

/* statements go here */

>

- 14 -



Chapter 2 Program Structure

2.2 Local Variables

In addition to the variables (arguments) that are used for passing data
into a function, a function may also have variables of its own (local
variables). Local variables are private variables that are not accessible
from any other function. The declarations for local variables are part of the
function body. All local variables must be declared prior to the first
executable statement.

Example:

int address(street, city, state, zip)

char street[], city[], state[];

long zip; /* argument declarations */

{
char c3
int i /* local variable declarations */
float f£;
double 4d;

/* executable statements */

- 15 -



Program Structure Chapter 2

2.3 Global Variables

In addition to functions, a source file may contain definitions of global
variables. Global variables are variables that are defined outside of any
functions in the source file. They may appear anywhere in the source file as
long as they are not inside a function. A global variable definition creates
a variable that may be used by one or more (perhaps all) of the functions in a
program.

Example:
char time[8]; /* global variable definitions */

char date[8];

int address(street, city, state, zip)

char street[], city[], state[];
long zip; /* argument declarations */
{
char c;
int i /* local variable declarations */
float f£;
double d;

/* statements go here */

by

A function may access any global variable that is defined prior to the the
definition of the function in the source file. If the global variable
definitions appear at the beginning of a source file, then all functions in
that source file have access to those global variables. A function may also
access a global variable that is defined after the function in the same source
file, or defined in a different source file, by declaring the global variable
as an external variable. An external declaration does not define a new global
variable. It simply allows access to a global variable defined elsewhere.

The external declaration may be either inside or outside a function. If the
declaration appears outside a function, then all following functions may
access the externally declared variable. An external declaration inside a
function provides access only for the function containing the declaration.

- 16 -



Chapter 2 Program Structure

Example:
char time[8]; /* global variable definitions */
char date[8];

extern float cost; /* external variable declarations */
extern double total;

int address(street, city, state, zip)

char street[], city[], statel];
long zip; /* argument declarations */
{

extern int counter; /* external variable declarations */
extern char *pointer;

char c3
int i /% local variable declarations */
float f;
double d;

/* executable statements */

}

Consider the following source files which contain functions and global
variables.

- 17 -



Program Structure Chapter 2

source file 1

global variable definitions (AA)

L T .

S Gt A G G dn B e S Bewd G S S8 A e Sewm S s Eewm Sems b
B S e G Beh GBS Bk tms Been s Wi Gie  Guws Gumt e Seme  hams  See Seem

source file 2

global variable definitions (CC)

D T T T T T O,
br Bk riww s B e A b b s B

Functions A and B both have access to the global variable definitions
labeled AA. Only function B has access to the global variable definitions
labeled BB. If function A needs to have access to the global variable
definitions BB, either the BB definitions should be moved in the source file
before function A or function A must make external declarations for the global
variables BB. If function A needs to access the global variable definitions
CC, which are in another source file, then external declarations for the
global variables CC must appear prior to function A or inside function A.

- 18 -



Chapter 3

Basic Data Types and Declarations

The basic data types of C are character, integer, and floating point.

3.1 Character Variables

Character variables are used to store single ASCII characters. A character
variable is one byte (8 bits) in size, the size necessary to hold one ASCII
character. Character variables are declared as:

char varl, var2, ... varn;

Character variables may be mixed with numeric data types in expressions.
The numeric value of a character is between 0 and 255. The ASCII table in the
appendix of this manual shows the corresponding numeric value of each

character.

Example:
main()
{
char a, b, c;
a="A"; /* 'A' is a character constant ¥/
b=a+ 1; /* 'B' is equivalent to 'A' + 1 */
c = 67; /* 'C' has a decimal value of 67 */

printf(""The decimal value of %c is %Zd\n",a,a);
printf("The decimal value of %c is %Zd\n",b,b);
printf("The decimal value of %c is %d\n",c,c);

- 19 -



Basic Data Types and Declarations Chapter 3

3.2 Integer Variables

Integer variables are used to store whole numbers (no fractional part).
The size of an integer variable is implementation dependent. The System
Implementation Manual discusses the size and range of integer variables.
Integer variables are declared as:

int varl, var2, ... varno;

Integer variables may be mixed with other basic data types in expressions.

Example:

main() /% print out the range for integer values */

{
int lower, upper;
int i, J;
lower = upper = 0;
for (i=1; !(upper > 0); i+=2) {
for (lower =1, j = 1; j <= i; j++)
lower = -2 * lower;
upper = lower - 1;
>
printf("integer range: %d to %d",lower,upper);
)

3.2.1 Short Integers

There is an adjective (short) that can be used in the declaration of an
integer variable that causes the miminum amount of storage to be allocated.
Short integers may be used to store positive and negative integer values. The

range of values that may be stored in a short integer variable is smaller than
that of an integer variable. Short integers are declared as:

short int varl, var2, ... varn;

The int keyword is optional and may be omitted.

- 20 -



Chapter 3 Basic Data Types and Declarations

Example:

main() /* print out the range for short integer values */
{
short lower, upper;
int i, 3
lower = upper = 0;
for (i=1; !(upper > 0); i+=2) {
for (lower =1, j = 1; j <= 1; j++)
lower = -2 * lower;
upper = lower - 1;
)

printf("short integer range: %d to %d",lower,upper);

3.2.2 Long Integers

There is an adjective (long) that can be used in the declaration of an
integer variable that causes the maximum amount of storage to be allocated.
Long integers may be used to store positive and negative integer values. The
range of values that may be stored in a long integer variable is larger than
that of an integer variable. Long integers are declared as:

long int varl, var2, ... varn;

The int keyword is optional and may be omitted.

Example:

main() /* print out the range for long integer values */
{
long lower, upper;
int 1, j;
lower = upper = 0;
for (i=1; !(upper > 0); i+=2) {
for (lower =1, j =1; j <= 1; j++)
lower = -2 * lower;
upper = lower - 1;
b
lower++; /* largest negative long prints as -0 */
printf('"long integer range: %1d to %1d",lower,upper);

- 2] -



Basic Data Types and Declarations Chapter 3

3.2.3 Unsigned Integers

There is an adjective (unsigned) that can be used in the declaration of an
integer variable that allocates the same amount of storage as a normal
integer. However, unsigned integers may be used to store only positive
integer values. The maximum positive value of an unsigned integer is
approximately twice that of a normal integer. Unsigned integers are declared

as:
unsigned int varl, var2, ... varn;

The int keyword is optional and may be omitted.

Example:

main() /* print out the range for unsigned integer values */

{

unsigned lower, upper, save;

int i, jis

lower = 0;

upper = 1;

for (i=1; upper != 0; i++)

for (upper =1, j =1; j <= 1i; j++) {
save = upper;
upper = 2 * upper;
)
upper = 2L * save - 1; /% L forces long calculation */
printf("unsigned integer range: %u to %u",lower,upper);

3.3 Floatiqg Point Variables

Floating point variables are used for numbers that may have a fractional
part. A floating point number consists of two parts: the mantissa and the
exponent. The size of the mantissa determines the number of digits of
accuracy while the exponent size determines the range of floating point
values. The accuracy and range of floating point variables is discussed in
the System Imlementation Manual. Single precision floating point variables are
declared as:

float varl, var2, ... varn;

- 22 -



Chapter 3

Example:

main()

{

float cost_per_ item, total_cost;

int number_of items;

cost_per_item = 1.23;

numbe:_of_items = 3

total cost = number_of items * cost_per_item;

printf("Total cost = 7.2f", total cost);

3.3.1 Double Precision

Double precision variables allow more digits to be stored in the mantissa
When maximum accuracy is needed, then double

of a floating point number.
Double precision variables

precision floating point variables should be used.
are declared as:

double float varl, var2, ... varn;

The float keyword is optional and may be omitted.

Example:

main()

{

double radius, pi, area, circumference;
pi = 3.141592654;
printf("Enter the radius of a circle:");
scanf("%Z1f", &radius);
area = pi * radius * radius;
circumference = 2 * radius * pij;
printf(" The radius is %.10f\n\
The area is %.10f\n\
The circumference is %.10f",
radius, area, circumference);

- 23 -

Basic Data Types and Declarations



Basic Data Types and Declarations Chapter 3

3.4 Storage Classes

In addition to having a defined type, all variables have a storage class.
A storage class defines how a variable is created and accessed. There are
four storage classes, auto, extern, static, and register. The format for
declaring a variable of a specific storage class follows:

storage_class data_type varl, var2, ... varn;

When a storage class is specified, the data_type may be omitted. The
compiler will assume the type int if the data_type is omitted.

3.4.1 Auto Variables

The most frequently used storage class is auto. Auto variables are local
variables. They are declared inside a function and are accessible only to
that function. The use of auto variables minimizes the amount of memory
required by a program. The reason is that auto variables are not allocated
storage until the function is called. When the function is exited, the
storage allocated to the auto variables is released. This dynamic allocation
of memory means that auto variables do not retain there values between
function calls. They must be initialized inside the function before they are
used. Auto variables are declared using the following format:

auto data_type varl, var2, ...varn;
By default, all variables declared inside a function are auto variables.
Therefore, the auto keyword is optional and may be omitted.
Example: ~
main() /% example of auto (local) variables */
{

auto char a, b; /* keyword auto is optional */
auto int i, j; /* either auto or int may be omitted */

- 24 -



Chapter 3 Basic Data Types and Declarations

3.4.2 Extern Variables

The storage class extern (external) is used to allow access to a variable
that has been defined outside a function. A variable defined outside a
function is a global variable. Unlike auto (local) variables, global
variables retain their values at all times. One or more functions may have
access to a global variable. A function is allowed access by including an
extern declaration for the global variable. An extern declaration does not
allocate any new storage space, it simply references the space allocated to
the global variable which has presumably been defined elsewhere. Extern

variables are declared using the following format:

extern data type varl, var2, ...varn;

A function may reference a global variable that has been defined in the
same source file or in a different source file. 1In either case, simply make
an extern declaration (inside the function) for the global variable. 1In the
case that the global variable is defined in the same source file and prior to
the function, the extern declaration may be omitted. 1In such a case, the
extern declaration is implicitly made by the compiler.

If all the functions in one source file need to access a global variable
defined in a different source file, a single global extern declaration will
provide all subsequent functions access to the global variable.

_25_



Basic Data Types and Declarations Chapter 3

Example:

Source File A

char GlA; /* define global variable */
int G2A; /* define global variable */
extern long G1B; /* external declaration for
global variable defined
in source file B */
main()
{
float LI1A;

double L2A;

/* main can access global variables GlA, G2A,
and G1B as well as local variables Ll1A and

L2A */
)
Afunction()
{
extern char GlA;
extern float G2B;
/* Afunction can access global variables GlA,
G2A, GlB, and G2B */
S
Source File B
long G1B; /* define global variable */
float  G2B; /* define global variable */
Bfunction()
{
extern char GlA;
/* Bfunction can access global variables GIA,
G1B, and G2B */
>

- 26 -



Chapter 3 Basic Data Types and Declarations

3.4.3 Static Variables

The storage class static may be used with either global or local
variables.

Static variables that are declared inside a functionm, like auto variables,
are accessible only to that function. The difference between local static and
auto variables is in the way storage is allocated. A static variable is
allocated permanent storage, like global variables. Therefore, a local static
variable retains its value between function calls. The static variable may be
defined during the first call to the function, and subsequent calls may use
this defined value.

Example:
setxy(flag)
int flag;
{
static float x, v;
if (flag) ¢
x = 10;
y = 10;
)
else {

>

A global variable that is declared to be static is similar to a normal
global variable. The difference is that a static global variable cannot be
accessed by a function in another source file. A global static variable is
invisible to all functions except those following it in the same source file,
A global static is normally used when a group of functions must share a common
variable and you want to make the variable invisible to functions in other
source files.

- 27 -



Basic Data Types and Declarations Chapter 3

Scurce File A

extern double seed; /* this will not allow access to the
global static variable, seed, in
source file B */

double random():

randomize(65.2);

seed = checkseed();

Source File B

static double seed; /% invisible to all
other source files */

randomize(value)
double wvalue;
{
seed = value;
3
double checkseed()
{
return seed;
}

3.4.4 Register Variables

The register storage class may be used only for local variables (declared
inside a function). The register storage class tells the compiler to make
these variables as efficient to use as possible. Normally, this involves
allocating a specific hardware register for storing the variable. The actual
effect of the register storage class is system dependent. See the Systems
Implementation Manual.

Example:

main()
{
register int i
int al1000];
for (i=0; i<1000; i++) alil = i;

- 28 -



Chapter 3 Basic Data Types and Declarations

3.5 Initialization of Basic Data Types

A declaration may specify an initial value for a variable. A basic data
type may be initialized by following the variable name with an equal sign (=),
followed by an expression. The expression may contain constants and/or
previously declared variables.

Both local and global variables may be initialized. If a global variable
is not explicitly initialized, it will have a value of 0. If a local variable
is not initialized, it will normally have an undefined value. However, a
compiler option provides the ability to automatically initialize local
variables to 0.

Example:

#define FIRST 10
#define LAST 100

char terminator = 'z';
int size LAST - FIRST + 1;
int next FIRST + size;

main()

{
float mph = 1.7e2;

double degrees = 36.0;
printf("%c %d %d %f %f'",terminator, size,
next, mph, degrees);

3.6 Type Definitions

Type definitions allow names to be associated with data types. The
reserved word, typedef, is used to define a name for a data type. A typedef
associates an identifier with one of the basic data types or with a user
defined (composite) data type. The identifier may then be used as a data type
in subsequent variable declarations. The format of a typedef is:

typedef data type identifier

Typedef provides a convenient way of declaring a type for certain variables
of a program that may need to be changed to another type at some later time.

_29_



Basic Data Types and Declarations Chapter 3

If an alias identifier is used as a type, rather than a predefined type, then
changing the type at a later time simply involves changing the typedef.

Example:

typedef int COUNTERS;
typedef float SUMS;

main()

{
COUNTERS i, j;
SUMS total;
int number ;

float length;
/% do something here */

by

In the previous example, if you decided that all variables declared as type
COUNTERS needed to be long integers and all variables declared as SUMS needed
to be double precision, you would simply change the two typedefs (change int
to long and float to double) and recompile. A good practice is to uppercase
the typedef identifiers so that they are easily distinguished from other
declarations.

You can also use typedef to define names for user defined types. For
example, it is often convenient to define a name for a structure definition.

The name can then be used to declare variables rather than using the structure
definition itself.

Example:

typedef struct {

long part_number;
unsigned quantity;
float cost;

> INVENTORY;

main()

{
INVENTORY item[100];

.
.

- 30 -



Chapter 4

Basic Operators and Expressions

4.1 Operator Precedence and Grouping

An expression consists of an identifier or a sequence of identifiers and
operators. An identifier used with an operator is called an operand. Two
things effect the order in which operations are performed in an expression.

(1) precedence of operators
(2) grouping (associativity) of operators.

When several operators are in one expression, some of the operators are
acted on before others. The operators acted on first are said to have a
higher precedence than those that are acted on later. The higher the
precedence, the sooner the operator will be acted on during evaluation of the
expression.

There are 15 levels of operator precedence in C. The table at the end of
this introduction shows the operators and the precedence level of each
operator. The highest precedence level is labeled 1 and the lowest level is
labeled 15. Each of these operators is govered in Chapters 4 and 5 and their
precedence level is designated by the number shown in the table. What the
table shows is that an addition operator at level 4 will be acted on before
the relational operator <= at level 6 or the assignment operator = at level
14. In other words, operators at level 1 will be operated on first, operators
at level 2 will be operated on second, etc. through level 15.

Parentheses may be used in expressions to control the order of operations.
Parentheses force the enclosed operations to be performed before the operator
precedence and grouping rules are applied. If parentheses are nested
(parentheses enclosed by other parentheses), then the innermost parenthesized
operations are performed first. Since there are so many operators at
different precedence levels in C, you may want to make liberal use of
parentheses to insure that an expression is evaluated as intended.

- 3] -



Basic Operators and Expressions Chapter 4

Example: a = b + 2 <= ¢ evaluates as a = ((b + 2) <= ¢)

Notice that several of the various precedence levels have more than one
operator shown for the level. Operators shown on the same level have equal
precedence. For example, the operators <, <=, >=, and > all have equal
precedence at level 6., Since all have equal precedence, the grouping
(associativity) rule for evaluation of expressions comes into play. Grouping
occurs from left to right or from right to left, depending on the operators.
Most operators group (associate) left to right, but some such as the unary
operators group right to left. Take the following expression to demonstrate grouping

adl=b>c<Kd>>=e

The relational operators all have equal precedence, so the grouping rule
takes effect. The relational operators group from left to right. This means
that the leftmost operator is acted on first. The rightmost operator 1is acted
on last.

(((a <= b) > ¢c) < 4d) >= e)

For grouping right to left, try

a =Db+=c *= d which groups as a = (b += (¢ *= d))

When expressions are evaluated, the precedence rule is applied first,
followed by the grouping rule. As an example, consider the following
expression that contains operators at different precedence levels.

a=Db+c/d*x2-ce

The operators, / and *, have the highest precedence. These operations will
therefore be performed first. But since they have equal precedence, which
will be performed first? The grouping rule must decide. Since the / and %
operators group left to right, the division is performed first, followed by
the multiplication. Using parentheses to illustrate, the following expression
is equivalent.

a=b+ ((¢ /d) *2)-ce
The operators, + and —, have the next highest precedence. Again, these
operators have equal precedence so the grouping rule must be applied. Since

the + and - operators group left to right, the addition is performed first.
The following expression is equivalent.

a= b+ ((c/d)*2))~-e)

- 32 -



Chapter 4 Basic Operators and Expressions

The only operator left is the assignment operator (=). This 1is the last
operation performed. The following parenthesized expression is equivalent to
the original expression.

(a = ((b+ ((c/d) * 2)) - e))

The following table shows the precedence levels of the operators and the
order of evaluation (grouping) of each. Operators on the same line have the
same precedence level, so <, >, <=, and >=, for example, all have the same
precedence. Each line is in order of precedence. Primary expression
operators have the highest precedence and the comma operator has the lowest
precedence., Operators at precedence level 1 are operated on first, then
operators at precedence level 2, and so on through precedence level 15. The
numbers to the left of the operators are used throughout Chapters 4 and 5 to
show the precedence level during discussions on the individual operators.

e o +
! Name ! Lvl! Operators !Grouping!
1 ====================::===:======:==::======:=:====z=.—::========== i
! primary L O . [] -> ! L to R !
f o e e e e o e o o i o i o i i 2 o o o e e !
! unary ! 2t 1~ - (typename) * & ++ —-- sizeof ! R to L !
1 o e e S o e o o S o o £ 2 e o e tadats !
! binary 131 * / % ! Left !
I arithmetic A== m e o o o o + to !
! 14 + - ! Right !
| et o e e o o o o e !
! shift 1 51 K >> 1L to R !
| e e e o e o e o o e o e o e !
! relational ! 6 ! < (= D= > ! 1L to R !
| e e e o e o 0 T i o s o e !
! equality P70 == 1= ! L to R !
f o e e e o e e o e o £ i o o o e e o e e !
1 1 8 1 & ! 1
! bitwise o + Left !
! logical 1 9! - ! to !
! o o e o o e e 8 o + Right !
1 1 10 1t ! ! 1
§ e e e e e e o e e o o o o o e e e §
! logical 111! && ! Left !
| connective He———fmmmmm e s + to !
! 112! P ! Right !
| e e e < o e e e e e e !
! conditional ! 13 ! ? ! R to L 1}
e e e o o e e e +
! assignment ! 14 ! = 4= —= /= %= J= = >>= &= "= [= 1 R to L !
R ettt Tl o s e e o o o i e o e e !
! comma t 15! s 'L to R !

- 33 -



Basic QOperators and Expressions Chapter 4

4.2 Assignment Operator

The = operator assigns (stores) a value to a memory location. The
assignment operator requires two operands. The left operand is an lvalue, the
location in memory where a value may be stored. The lvalue most often used is
a simple variable name. The right operand is an expression.

Examples:
c = 'a'; /* assigns the character a to variable ¢ */
i= 23; /* assigns the integer 23 to variable i */
f = 32.8; /* assigns the real 32.8 to variable £ %/

4.3 Arithmetic QOperators

The arithmetic operators require two operands.

Example:

operand operator operand

length * width

X / y

n A 8

alil] + ali + 2]
big - little

The following table lists all the arithmetic operators, the precedence
level of each, the operations they perform, the type of operands which may be
used, and the type of the result each operator yields. Other properties of
each operator are given in the following paragraphs.

- 34 -



Chapter 4 Basic Operators and Expressions

!' Op ! Lvl! Operation ! Type of Operand ! Type of Result !
' T I I I I T T T T T T I R I T N D I T I T IR ST O S NN U N T I O T e I N I A ST I I '
! ! ! 1 1 !
! * ! 3 ! multiplication ! basic data type ! basic data type!
! ! ! 1 ! !
P e o o e e e e !
! ! ! ! ! !
vt/ ! 31! division ! basic data type ! basic data type!
! ! ! ! ! !
| o e e e e o e e e e R !
! ! ! ! ! !
' Z ! 3 ! modulo ! integer ! integer !
! ! ! ! ! !
e o e e o o e e o e e e !
! ! ! ! basic data type ! basic data type!
' + ! 4 ! addition ! or pointer ! or pointer !
! ! ! ! ! !
oo e o e e e {
! ! ! ! basic data type ! basic data type!
!' - ! 4 ! gsubtraction ! or pointer ! or pointer !
! 1 1 1

4.3.1 Properties of + Operator

The + operator performs addition between two operands of any of the basic
data types, or between a pointer and an integer. The + operator groups left
to right.

Example:

X =y + z + incr groups as x = ({y + z) + incr)

4.3.2 Properties of ~ Operator

The - operator performs subtraction between two operands of any basic data
type, or between a pointer and an integer. The - operator may also be used to
subtract 2 pointers if the pointers both point to the same array. The result
of the subtraction yields the number of array elements between the two
pointers. The - operator groups left to right.

- 35 -



Basic Operators and Expressions Chapter 4

Example:
X =y - z - incr groups as x = ({y - z) - incr)

The — operator may also be used as a unary operator, requiring only one
operand. In this case, the operand must be a basic data type. When used as a
unary operator, the result is the negative of the value of the operand. If
the operand is positive, the result is negative. If the operand is negative,
the result is positive.

Examples:

-10 ~-32.3 -a -number

4.3.3 Properties of * QOperator

The * operator performs multiplication between two operands of any of the
basic data types. Multiplication cannot be performed using pointers. The *
operator groups left to right.

Example:

X =y * z % incr groups as x = ((y * z) * incr)

4.3.4 Properties of / Operator

The / operator performs division with operands of any of the basic data
types. Division may not be performed on pointers. Division with integer
operands yields an integer type result which is truncated. The / operator
groups left to right.

- 36 -



Chapter 4 Basic Operators and Expressions

Example:
x =y / z / incr groups as x = ((y / z) / incr)
If a and b are of type INT, then
(a / b)) * b

does not always equal "a" since integer division truncates the
fractional part. However,

((a/ b) *b) + (a%Db) ==a

is always true. The % operator adds the remainder of the integer
division, the part that was truncated.

4.3.5 Properties of 7 Operator

The % operator performs modulo arithmetic on integer operands. The %
operator yields the remainder of the division of the first operand by the
second operand. The % operator groups left to right.

Example:

x =y % z % incr groups as x = ((y % z) % incr);

32 2 11 =10 2747 =6
15%23 =20 3%5=23

4.4 Relational and Equality Operators

The relational and equality operators are used to test or compare the
condition between two operands. Both relational and equality operators
require two operands. The operands may be basic data types or pointers. The
relational operators are <, >, <=, and >=. The equality operators are == and
!=, Relational and equality operators produce an integer result that is
non-zero if the condition is true, or 0 if the condition is false. For
example, the expression 5 > 7 evaluates to 0 since the condition is false, 5
is not greater than 7.

The following table lists the relational and equality operators, the
precedence level of each operator, the conditions they test, the type of
operands which may be used, and the type of the result. Any other properties
for each operator are given in the paragraphs following the table.

- 37 -



Basic Operators and Expressions Chapter 4

!' Op ! Lvl! Operation ! Type of Operand ! Type of Result !
|zmsssss s scrres eSS S SS s S sEr S ST EEEEESEESsSSSSsssssssomsmms |
! ! ! ! basic data type ! !
! < ' 6! less than ! or pointer ! integer !
1 1 ! ! ! !
e et e e !
! ! ! ! basic data type ! !
' <=! 6 ! less than or ! or pointer ! integer !
! ! ! equal to ! ! !
—— b S —— S — !
! ! ! ! basic data type ! !
!' > !t 6 ! greater than ! or pointer ! integer !
! ! 1 ! ! !
S L S b !
! ! ! ! basic data type ! !
! >=1 6 ! greater than or ! or pointer ! integer !
! ! ! equal to ! ! !
J—— S — b e S — !
! ! ! ! basic data type ! !
! ==1 61 equal to ! or pointer ! integer !
] ! ! ! 1 !
L e e e e e e e !
! ! ! ! basic data type ! !
' I=1 6 ! not equal to ! or pointer ! integer !
! ! ! ! ! !
Examples of Relational and Equality Operators:

expression result order of evaluation

2<3 1 (true) (2 < 3)

3 <=2 0 (false) (3 <= 2)

2% 3 >=6 1 (true) (2% 3) >=6

3 1=2 1 (true) (3 1= 2)

31=6/2 0 (false) 3!=1(61/ 2)

1 ==61%5 1 (true) 1 ==(67%5)

4 > 8 % 23 % 10 0 (false) 4 > ((8 * 23) % 10)

16 > 8 == 1 (true) (16 > 8) == 1

1 1= (7 ==0) 1 (true) 1 != (7 ==0)

1 !=7==90 0 (false) (1 !=7) ==0

The equality operators, == and !=, may be used to compare any two pointer

variables. However, the relational operators, <, >, <=, and >= may be used to
compare only pointers that point to elements of same array. When comparing
pointers with the relational operators, the result is true if the left operand
points to a lower numbered element than the right operand. Otherwise the
result is false.

- 38 -



Chapter 4 Basic Operators and Expressions

4.4.1 Properties of < Operator

The < operator yields a non-zero value (true) if the left operand is less
than the right operand. Otherwise, it yields a 0 (false). The < operator may
be used to compare operands that are basic data types, or pointers to elements
of an array. The < operator groups left to right.

4.4.2 Properties of <=.0Operator

The <= operator yields a non-zero value (true) if the left operand is less
than or equal to the right operand. Otherwise, it yields a 0 (false). The <=
operator may be used to compare operands that are basic data types, or
pointers to elements of an array. The <= operator groups left to right.

4.4.3 Properties of > Operator

The > operator yields a non-zero value (true) if the left operand is
greater than the right operand. Otherwise, it yields a 0 (false). The >
operator may be used to compare operands that are basic data types, or
pointers to elements of an array. The > operator groups left to right.

4.4.4 Properties of >= Operator

The >= operator yields a non-zero value (true) if the left operand is
greater than or equal to the right operand. Otherwise, it yields a 0 (false).
The >= operator may be used to compare operands that are basic data types, or
pointers to elements of an array. The >= operator groups left to right.

4,4.5 Properties of == Operator
The == operator yields a non-zero value (true) if the left operand is equal
to the right operand. Otherwise, it yields a 0 (false). The == operator may

be used to compare operands that are basic data types, or pointers. The ==
operator groups left to right.

4.4.6 Properties of != Operator
The != operator yields a non-zero value (true) if the left operand is not
equal to the right operand. Otherwise, it yields a 0 (false). The != operator

may be used to compare operands that are basic data types, or pointers. The
!= operator groups left to right.

- 39 -



Basic Operators and Expressions Chapter 4

4.5 Logical Operators

The relational and equality operators produce a value that is either
non-zero or 0. These are often referred to as logical values, a non-zero value
representing true, and a 0 value representing false. The logical operators
also produce logical values. There are three logical operators, the && (and)
operator, the || (or) operator, and the ! (not) operator.

The logical operators, the precedence level of each operator, the
operations they perform, the type of operands and the type of the result are
shown in the following table. The properties of each operator are given in
the paragraphs after the table.

! ! ! logical ! ! !
!' && ! 11 ! connective ! basic data type ! integer !
! ! ! AND ! ! !
logical
connective
OR

12

logical
negate
NOT

4.5.1 Properties of && Operator
The && (logical and) operator requires two operands which represent logical
values, 0 (false) or non-zero (true). The result of the operation is non-zero

(true), if and only if both operands are non-zero (true). Otherwise the result
is 0 (false).

- 40 -



Chapter 4 Basic Operators and Expressions

Truth Table for &&

condition result
false 86 false  false
false && true false
true && false false
true && true true
4.5.2 Properties of || Operator
The || (logical or) operator requires two operands which represent logical

values, 0 (false) or non-zero (true). The result of the operation is 0
(false), if and only if both operands are 0 (false). Otherwise the result is
non-zero (true).

Truth Table for ||

condition result
false || false  false
false || true true
true || false true
true || true true

4.5.3 Properties of ! Operator

The ! (logical negate) operator requires one operand which represents a
logical value, O (false) or non-zero (true). The result of the operation is
non-zero (true), if and only if the operand is 0 (false). Otherwise the result
is 0 (false).

Truth Table for !

condition result
!false true
ltrue false

_41_



Basic Operators and Expressions Chapter 4

4.6 Type Conversions

C supports the use of mixed mode arithmetic. Mixed mode arithmetic is the
use of more than one data type in an expression. For example, multiplying a
float by an int. C allows this by performing implicit type conversions before
evaluating the expression. The following rules apply to implicit data type
conversion in expresssions. The rules are applied to all expressions in the
order listed.

(1) All char and short operands are converted to int and
all float operands are converted to double.
Proceed to step 2.

(2) 1If there is a double operand, then all other operands
are converted to double and the result is double.
Otherwise proceed to step 3.

(3) If there is a long operand, then all other operands
are converted to long and the result is long.
Otherwise proceed to step 4.

(4) If there is an unsigned operand, then all other operands
are converted to unsigned and the result is unsigned.
Otherwise proceed to step 5.

(5) All operands are int and the result is int.

The above rules always cause an upward type conversion. That is, all
operands are converted to a type that is more precise. Therefore, the
application of these rules increase the accuracy of the result.

There are also implicit downward type conversions in C. These type
conversions take place when the result of an expression is assigned to a
variable that is less precise than the result. Another time that this can
occur is when the type of a function is less precise than the return value.
Downward type conversions can result in loss of accuracy because the value is
truncated to fit the type of its destination.

result type destination type conversion rule

double float round and truncate excess bits
float long truncate fractional part

long int truncate high order bits

int short truncate high order bits

short char truncate high order bits

- 47 -



Chapter 5

More Operators and Expressions

5.1 Increment and Decrement Operators

Increment and decrement operators require a single operand. The operand
must be an lvalue. That is, it must refer to a memory location where a value
may be stored. For example, a variable name is an lvalue. The operand may be
a basic data type or a pointer. Incrementing a basic data type is equivalent
to adding 1 to it. Decrementing a basic data type is equivalent to
subtracting 1 from it. When a pointer type is incremented or decremented, the
value that it is added or subtracted is not necessarily 1. It is equal to the
size (in bytes) of the pointed to data type. Incrementing a variable that
points to a character (char) will add 1 to the pointer since the size of a
character is 1 byte. Decrementing a pointer to a character will subtract 1
from the pointer,

Besides the assignment operator, the increment and decrement cperators are
the only operators that alter the value of an operand. The following table
lists the increment and decrement operators, the precedence level of each
operator, the operations they perform, the tyvpe of operands which may be used,
and the type of the result. Any other properties of each of the operators is
given in the paragraphs following the table.

! ! ! ! basic data type ! basic data type!
!' ++ 1! 2 ! increment ! or pointer ! or pointer !
! ! ! ! ! i

e e e e o e e e !
! basic data type ! basic data type!
1 !
1 ]

or pointer or pointer !

- 43 -



More Operators and Expressions Chapter 5

Examples of Increment and Decrement Operators:

expressions order of evaluation
a++ (a++)

++a (++a)

p++ + ++b ({p++)+(++b))

z [ --c z / (--c)

c-- % 3 ((c==) % 3)

z [ c—- (z / (e==))

5.1.1 Properties of ++ Operator

The increment operator may be used to increment a basic data type or a
pointer. The operand must be an lvalue. The increment operator may precede
the operand (pre-increment) or follow the operand (post-increment),

pre-increment: ++a post—increment: a++

When pre-increment is used, the operands value is incremented and stored as
its new value. The new value is the result of the operation. When
post-increment is used, the operands value is incremented and stored as the
new value. However, the result of the operation is the old value, the value
of the operand before being incremented. The ++ operator groups right to
left,

Example: assume s and t are integers, t = 5
result
S=++t; t=6’s=6
8 = t+t; t=6,s8=5
5.1.2 Properties of -- Operator

The decrement operator may be used to decrement a basic data type or a
pointer. The operand must be an lvalue. The decrement operator may precede
the operand (pre-decrement) or follow the operand (post-decrement).

pre-decrement: --a post-decrement: a——
When pre-decrement is used, the operands value is decremented and stored as
its new value. The new value is the result of the operation. When

post-decrement is used, the operands value is decremented and stored as the
new value. However, the result of the operation is the old value, the value

- 44 ~



Chapter 5 More Operators and Expressions

of the operand before being decremented. The -~ operator groups right to
left.
Example: assume s and t are integers, t = 5
result
— =4, 54
8§ = t——; t=4, s =5

- 45 -



More Operators and Expressions Chapter 5

5.2 Bitwise Operators

The bitwise operators produce a result that is determined by examining each
bit of the operand(s). The ~ (bitwise negate) operator requires only one
operand. All the rest require two operands. The following table lists all of
the bitwise operators, the precedence level of each operator, the operations
they perform, the type of operands which may be used, and the results of the
operators.

!' Op ! Lvl! Operation ! Type of Operand ! Type of Result !
! R S 8 R T T D O R S O R R R 2 S 25 I 0 2 S I R 0 0 o o o o e e e e 1 v e o e e e
! ! ! bitwise ! basic data type ! same as operand!
! ™ ! 2! negate ! (excluding ! (except !
! ! ! ! float & double) ! char --> int) !
e o o o e e e e e e !
! ! ! bitwise ! basic data type ! same as operand!
!' >> ! 51 right shift ! (excluding ! (except !
! ! ! ! float & double) ! char --> int) !
R i e e e e e e !
! ! ! bitwise ! basic data type ! same as operand!
! K151 left shift ! (excluding ! (except !
! ! ! ! float & double) ! char --> int) !
e o e e e e e e e e e o o e e e e e !
! ! ! ! basic data type ! same as operand!
' & ! 8 ! bitwise AND ! (excluding ! (except !
! ! ! ! float & double) ! char —-> int) !
e o e e o e Fom e —————— e !
! ! ! bitwise ! basic data type ! same as operand!
!~ 1 9 ! exclusive OR ! (excluding ! (except !
! ! ! ! float & double) ! char --> int) !
e o e e e R i e e !
! ! ! bitwise ! basic data type ! same as operand!
! | 110 ! inclusive OR ! (excluding ! (except !
1 1 1 !

float & double)

char --> int) !

5.2.1 Properties of ~ Operator

The result of the
operator changes all
In the

The ~ (bitwise negate) operator requires one operand.
operation is the one's complement of the operand. The ~
I bits to 0 and all O bits to 1. The ~ operator groups right to left.
following examples, S stands for int (which is signed) and U stands for
unsigned.

- 46 -



Chapter 5 More Operators and Expressions

Examples:
result
decimal binary representation  binary decimal

] ~3 ~00000011 11111100 - 4
U ~3 ~00000011 11111100 252
S ~9 ~00001001 11110110 - 10
U ~9 ~00001001 11110110 246
S ~110 ~01101110 10010001 -111
U ~110 ~01101110 10010001 145

Notice that ~(73) = 3 and ~(~110) = 110.

5.2.2 Properties of >> Operator

The >> (shift right) operator requires two operands. The left operand is
shifted to the right by the number of bits specified by the right operand. 1If
the left operand is an unsigned integer, then the vacated bits in the left
operand are 0 filled (also known as logical fill). If the left operand is a
signed integer, then the vacated bits in the left operand are filled with an
extension of the sign bit (also known as arithmetic f£ill). The >> operator
groups right to left. 1In the following examples, S stands for int (which is
signed) and U stands for unsigned.

result
decimal binary representation binary decimal
s 110 >> 2 01101110 >> 2 00011011 27
U 110 >> 2 01101110 >> 2 00011011 27
S =42 >> 3 11010110 >> 3 11111010 -5
U 214 >> 3 11010110 >> 3 00011010 26
s =72 >> 1 10111000 >> 1 11011100 ~-36
U 184 >> 1 10111000 >> 1 01011100 92
S -42 >> 8 11010110 >> 8 11111111 -1
U 214 >> 8 11010110 >> 8 00000000 0

- 47 -



More Operators and Expressions Chapter 5

5.2.3 Properties of << Operator

The << (shift left) operator requires two operands. The << operator shifts
the left operand to the left by the number of bits specified by the right
operand. The vacated bits in the left operand are 0 filled (logical fill).
The << operand groups right to left. 1In the following examples, S stands for
int (which is signed) and U stands for unsigned.

result
decimal binary representation binary decimal
S 110 << 2 01101110 << 2 10111000 -72
U 110 <K 2 01101110 K< 2 10111000 184
S -42 <K 3 11010110 <K 3 10110000 ~-80
U 214 <K<K 3 11010110 <K 3 10110000 176
§ -72 K1 10111000 <K 1 01110000 112
U 184 K1 10111000 <K' 1 01110000 112
S =42 <K 8 11010110 << 8 00000000 0
U 214 <K 8 11010110 <L 8 00000000 0

5.2.4 Properties of & Operator

The & operator performs a bitwise AND between two operands. This operator
compares each bit of the left operand with the corresponding bit of the right
operand. For each bit, the result is 1 if the two compared bits are both 1,
otherwise the result is 0.

Table for bitwise &

— e OO
R R
OO
i i

-0 00

The & operator groups left to right. 1In the following examples, S stands
for int (which is signed), U for unsigned, and B for the binary representation
of the decimal value.

- 48 -



Chapter 5 More Operators and Expressions

S 2 U 2 B 60000010
& 1 & 1 & 00000001

0 0 00000000

S 2 U 2 B 00000010
& 3 & 3 & 00000011

2 2 00000010

S 3 U 3 B 00000011
& 5 & 5 & 00000101

1 1 00000001

S -72 U 184 B 10111000
& 110 & 110 & 01101110

40 40 00101000

5.2.5 Properties of ~ Operator

The ~ operator performs a bitwise XOR (exclusive OR) between two operands.
This operator compares each bit of the left operand with the corresponding bit
of the right operand. For each bit, the result is 0 if the two compared bits
have the same value, otherwise the result is 1.

Table for bitwise ~

~

]

~

~

— - O
—_0 - O
mu

#

O = = O

~

The " operator groups left to right. In the following examples, S stands
for int (which is signed), U for unsigned, and B for the binary representation
of the decimal value.

- 49 -



More Operators and Expressions Chapter 5

S 2 U 2 B 00000010
1 “ 1 ~ 00000001

3 3 00000011

s 2 U 2 B 00000010
3 -3 ~ 00000011

1 1 066600001

S 3 U 3 B 00000011
~ 5 5 ~ 00000101

6 6 00000110

S -72 U 184 B 10111000
~ 110 ~ 110 " 01101110
-42 214 11010110

5.2.6 Properties of | Operator

The | operator performs a bitwise OR (inclusive OR) between the two integer
operands. This operator compares each bit of the left operand with the
corresponding bit of the right operand. For each bit, the result is 0 if the
two compared bits are both 0, otherwise the result is 1.

Table for bitwise |

- O
||
L e N =

!
|
l
l

O O

The | operator groups left to right. In the following examples, S stands
for int (which is signed), U for unsigned, and B for the binary representation
of the decimal value.

- 50 -



Chapter 5 More Operators and Expressions

S 2 U 2 B 00000010
[ 1 1 | 00000001

3 3 00000011

S 2 U 2 B 00000010
| 3 | 3 | 00000011

3 3 00000011

S 3 U 3 B 00000011
|5 |5 | 00000101

7 7 00000111

S -72 U 184 B 10111000
| 110 | 110 | 01101110

-2 254 11111110

5.3 Assignment Operators

In addition to the simple assignment operator =, there are operators that
are combinations of the assignment operator with either an arithmetic or
bitwise operator. These combination operators provide a short hand notation
for assignment.

lvalue op= expr short hand for: lvalue = lvalue op expr
where lvalue is normally a variable name

op is one of the arithmetic or bitwise operators
expr is any valid C expression

The assignment operators, the precedence level of each operator, the
operation they perform, the type of operand they require, and the type of the
result are shown in the following table.

- 5] -



More Operators and Expressions

addition
assignment

subtraction
assignment

multiplication
assignment

division
assignment

modulo
assignment

right shift
assignment

left shift
assignment

bitwise
AND assignment

bitwise
OR assignment

bitwise
XOR assignment

basic data type
or pointer

basic data type
or pointer

basic data type
(excluding
float & double)
basic data type
(excluding
float & double)
basic data type
(excluding
float & double)
basic data type
(excluding
float & double)
basic data type
(excluding
float & double
basic data type
(excluding
float & double)

- 52 -

type of left
operand

type of left
operand

type of left
operand

type of left
operand

type of left
operand

type of left
operand

type of left
operand

type of left
operand

type of left
operand

type of left
operand

Chapter 5



Chapter 5 More Operators and Expressions

Examples:
short hand equivalent
x += 1 ===D x=x + 1
y %= z - delta === y =y % (z - delta)
t 4= r ===) t=t Zr
a>>=b === a=a>>hb

5.4 Address Of and Contents Of Operators

There are two operators that are related to pointers. Both require one
operand. The & (address of) operator returns the address of its operand. The
* (contents of) operator returns the contents of the object pointed to by its
operand. The & operator groups right to left.

! Op ! Lvl! Operation ! Type of Operand ! Type of Result !
| e s s o e e e e e S S S N S S S S R SIS IR |
! ! ! ! ! !
!' & ! 2! address of ! variable ! pointer to !
! ! ! ! ! variable !
— o O o !
! ! ! ! ! !
! % 1 2! contents of ! pointer to ! value of !
! ! ! ! variable ! variable !

5.4.1 Properties of & Operator

The & (address of) operator requires one operand that must be a variable
name. The name may refer to a simple variable (basic data type), an array
element, a structure, or a member of a structure. The result of the operation
is the address of the operand.

- 53 -



More Operators and Expressions Chapter 5

Examples:
operation result
&i address of integer variable i
&cf2] address of element 3 of array t
&list.age address of member age of structure list

5.4.2 Properties of * Operator

The * (contents of) operator requires one operand that must be the address
of a variable. The operand may be a single pointer variable or any legal
pointer expression. The result of the operation is the value that is stored
at that address. The expression, *(&i), reads "contents of the address of
i'". The &i is a pointer expression that returns the address of variable i.
The * operator then returns the value stored at that address. The simple
expression, i, is therefore equivalent to *(&i).

Pointer variables are declared by preceding the variable name with the *
operator. The declaration, int *ptr, declares the variable ptr as a pointer
to a value of type int. Assuming i is a variable of type int, ptr = &i;
assigns the address of i to the variable ptr. Then the expression, *ptr,
returns the value of i. The * operator groups right to left.

Example:

main()
{
int 1
char *ptr; /* pointer to value of type char */
char alphabet[27];
ptr = alphabet; /* equivalent to ptr = &alphabet[0] */
for (i=0; i<26; i++) *(ptr+i) = i + 'a';
alphabet[26] = '"\0';
printf("%s",alphabet)

5.5 Sizeof Operator

The sizeof operator requires a single operand that may be either an
expression or a data type name. The result of the operation is the size, in
bytes (a byte is the amount of memory required to store a single character),
of the operand. If the operand is a data type name (eg. char), it must be
enclosed by parentheses. The two forms for using the sizeof operator are as
follows.

- 54 -



Chapter 5 More Operators and Expressions

sizeof (type-name)
sizeof expression

The "sizeof(type-name)" returns the size of an object of the specified
type. For example, sizeof(char) returns the value 1 since a character
requires 1 byte of storage.

The "sizeof expression' returns the size of the result of the expression.
Any valid expression may be used. For example, sizeof a + 1.0 will return the
size of a double floating point value.

Example:
main()
{
char a[l10];
int 13
struct parts {
char partl;
float part2;
} key;
printf("size of char = %d\n", sizeof(char));
printf("'size of int %Zd\n'', sizeof 1i);
printf(""size of long %Zd\n", sizeof(long));
printf("size of float %Zd\n", sizeof(float));
printf("size of double = Z%d\n'", sizeof(double));
if (sizeof(struct parts) != sizeof key)
printf("this will not be printed');

il

[]

5.6 Cast Operator

The cast operator provides a way of forcing the result of an expression to
a specific data type. A cast specifies a data type inside parentheses
followed by an expression. The expression is first evaluated and then the
result is converted (cast) to the specified type. The form of the cast is as
follows.

(type-name) expression

Consider the following example.

- 55 =



More Operators and Expressions Chapter 5

double tan(), value;
int i

i=1;

value = tan(i);

The expression tan(i) will not work properly since the tangent function
requires an argument of type double. However, a cast will allow the integer i
to be used as an argument to the tangent function.

value = tan((double) i);

5.7 Comma Operator

The comma operator allows multiple expressions to be used where only a
single expression would normally be allowed. An expression list may be formed
by separating individual expressions by commas. The expressions in the list
are evaluated left to right. The last expression evaluated then becomes the
result of the expression list, the results of the previous expressions being
discarded. The comma operator groups left to right.

Example:
for (i=0, j=0; i<MAXI && j<MAXJ; i++, j++);
The for statement requires three expressions separated by the semicolon

(;). In this example, the first and third expressions utilize the comma
operator to turn a single expression into two expressions.

5.8 Structure Member Operator

The structure member operator is used to access a member of a structure
variable. A period placed between the variable name and a member name of a
structure accesses a particular member of the structure.

- 56 -



Chapter 5 More Operators and Expressions

Example:

declaration of structure:

struct {
char first member;
int second member;

float third_ﬁémber;
} variable_name;

Accessing members of the structure:

variable name.first member
variable name.second member
variable name.third member

5.9 Structure Pointer Operator

The structure pointer operator is used to access a member of a structure
pointer variable. The pointer operator is formed with the minus sign followed
by the greater than sign. The -> symbol placed between the pointer variable
name and a member name of a structure accesses a particular member of the
structure.

Example:

declaration of structure:

struct {
char first member;
int second member;

float third_ﬁember;
> *variable name;

Accessing members of the structure:
variable_name—>first_member

variable name->second member
variable name->third member



More Operators and Expressions Chapter 5

5.10 Conditional Expression

The conditional expression allows the logical value of one expression to
determine which of two other expressions will be evaluated. The ternary
operator, ?:, is used to define a conditional expression. The conditional
expression has the following form.

exprl ? expr2 : expr3

The above form represents a single expression that is actually composed of
three expressions. An expression of this form is evaluated as follows.

(1) exprl is evaluated and determined to be either non-zero
(true) or zero (false)

(2) 1If exprl is non-zero, then expr2 is evaluated and becomes
the result of the conditional expression.

(3) If exprl is zero, then expr3 is evaluated and becomes
the result of the conditional expression.

A conditional expression is very similar to an if-else statement
combination.

if (exprl)
expr2;

else
expr3;

The difference is that the conditional expression may be used any place
that an expression is legal and it has a result just like any other
expression. The result of the conditional expression is the result of either
expr2 or expr3. These expressions may yield results of different types. For
example, expr2 might yield a result of type int while expr3 yields a result of
type double. If the resulting types are different, the final result will be
converted to the type having the greatest precision. The normal type
conversion rules are applied in such a case. For example, if expr2 was
evaluated as int, it would then be converted to double because expr3 is
double. The conditional expressions group right to left.

- 58 -



Chapter 5 More Operators and Expressions

Examples:
smallest = a < b 7 a : b;

printf{"This employee is %s,\n",
salary > 30000 ? "rich"™ : "poor');

5.11 Constant Expressions

A constant expression is an expression that involves only constants. A
constant expression is evaluated at compile time and may be used wherever a
constant is appropriate.

Examples:
#define SIX 6

SIX * 2

2+ 3

sizeof(long)

!Al

“This is a string constant.”

5.12 Sample Expressions

The following expressions on the right are the parenthesized equivalents to
the expressions on the left. They show how the order of evaluation is
effected by operator precedence and grouping.

_59...



More Operators and Expressions

expression

Fptr++
alpha * - 2
Ix == 0

s
it n
o
B
[p)
8
je 7t
I
0]

oW sk
i
«

o
B

Chapter 5

equivalent

*(ptr++)

alpha * (- 2)

(tx) == 0

a=((~b) + (¢ *¥d)) - e

o

a (b+(c %2 d)) - e

x = (y == z)

x *= (y = (z = q))

x = (y = (z =1))

s =((-t) + (g *x) /[ c)
z=(({aZb)*¢c)+ d)
a=((b<=c) || (d t=¢e))
a= ((b) || (c && d))

g %= ((-(a++))/c)
-((alj])++)

£f=((g/ n) (1)
f=((("g) &n) | (1~ 3N
c *= (d /= (e += (f == g)))
q*= (({x - vy) 7 (++d) : e) K= 3)
F=({{x+=3), (x*y))
*(str.mem)

- 60 -



Chapter 6

Functions

C programs are composed of a set of one or more functions. The functions
are used to split large programs into smaller, easier to handle pieces. Each
function can perform one piece or task. The functions of a program may be
defined in any order and may also reside in several different files. Each
file may be compiled separately.

Every program must always contain one and only one function named main.
Program execution always begins with the main function. The main function may
then call other functions which in turn may call still other functions. When
a function is called, program execution is transferred to the first statement
in the called function. The function terminates after executing a return
statement or the last statement in the function. When the called function
terminates, program execution returns to the calling function. Execution in
the calling function resumes with the evaluation of the expression in which
the call was made. The value returned by the function is used as an operand
in the expression. In many cases, the function call is the only operand of an
expression. In such cases, the returned value is simply discarded.

Data communication between functions is accomplished through shared global
(extern) variables and/or through an argument list. The argument list of a
function defines variables that are used to contain values passed from other
functions.

6.1 Function Definition

- 6] -



Functions

A function definition has the form:
data_type function name(argl, arg2, ... argn)

/* declarations for arguments argl...argn */

{
/* function body */
)
where:
data_type is the data type of the value returned

by the function.

function name is the name by which the function is
called.

function_body is the compound statement containing
variable declarations and statements

6.1.1 Function Names

A function name is an identifier, so any legal identifier may be used to
name a function. The name chosen must not conflict with any other function
names or external variable names. Function names may be upper case, lower
case, or mixed case. The accepted convention is to make them lower case, the
same as variable names. By default, the compiler converts all function names
to upper case in the object code output. However, a compiler option is
provided to disable this conversion.

6.1.2 Function Types

The data type of a function defines the type of value that the function
returns. The return value of a function may be one of the basic data types
(char, int, short, long, unsigned, float, double) or a pointer. A function
cannot return a composite data type (eg. structure). If the function type is
not specified, then it is assumed that the function returns an int (integer).
The return statement is used to define the value that a function returns. The
value is converted to the type of the function before being returned. If a
function does not contain a return statement, the value returned is

undefined.

There is a special data type that is used only in function definitions.
This is the type void. The void data type specifies that the function does
not return a value. A function of type void is equivalent to a procedure in
Pascal. The void data type is needed when calling procedures written in
Pascal. Before calling a Pascal procedure, declare it as a function of type
void. A void function declaration is also required when calling some of the
special library functions.

- 62 -



Chapter 6 Functions

6.1.3 Function Arguments

If no arguments are needed by a function, the function name should be
followed by an empty argument list, (). Otherwise, the argument list must
specify a name for each argument. All the arguments of a function should be
declared immediately following the argument list. Any argument that is not
declared is considered to be of type int (integer). The argument declarations
must not specify a storage class.

Any basic data type (or a pointer to any type) may be used to declare
function arguments. Structures and arrays must be passed using pointers.
However, due to the automatic type conversion rules of C, it is best to avoid
using some data types. The data types that should not be used for function
arguments are char, short, and float. The reason is that these data types are
automatically converted up when used in expressions. The char and short data
types are converted to int while the float data type is converted to double.
These conversions take place in all expressions, including the arguments of a
function call. Therefore, the three data types mentioned should not be used
to declare function arguments.

note: A compiler option is provided to turn off automatic type
conversion. The option applies only to the arguments in
a function call. By using the option, it is possible to
declare arguments of type char, short, or float.

6.1.4 Function Body

The outermost left and right braces ({}) form a compound statement that
encloses the body of a function. The function body may contain declarations
as well as statements., All declarations must precede the first statement.
The declarations may be for any of the following purposes.

1. Declare local variables (storage class auto or static)

2. Declare global variables (storage class extern)

3. Declare the functions that are called

Local variable declarations create variables that are private to the
function. They have a storage class of either auto or static. Auto is the
default storage class and int is the default data type.

- 63 -



Functions Chapter 6

Local variable declarations:

char  alpha; /* alpha 1is auto char */
auto  number; /* number is auto int */
auto  float price; /* price 1is auto float */
static count; /* count is static int */
static double sum; /% sum is static double */

Global variable declarations do not create variables. They simply allow
the function to access a variable that is defined externally (outside of the
function). The extern storage class must be specified and the default data
type is int.

Global variable declarations:

extern char alpha; /* alpha is extern char */
extern number; /* number is extern int */
extern float price; /* price 1is extern float  */
extern int count; /* count 1is extern int */
extern double sum; /* sum is extern double */

Function declarations are used to declare the names and types of other
functions that are called. It is not necessary to declare a called function
that returns the type int. However, it is necessary to declare all called
functions that return a type other than int. The compiler assumes all
functions to be of type int unless told otherwise. The sole purpose of a
function declaration is to tell the compiler the type of value returned by the
function. The arguments of the function should not be specified in the
declaration. The empty argument list, (), is enough to tell the compiler that
the identifier is a function and not a variable.

Function declarations:

char nextbyte(); /* nextbyte returns char ¥/
int nextword(); /* nextword returns int */
float  getreal(); /* getreal returns float */
double sin{(); /* sin returns double */

The executable statements follow the last declaration in the function. The
statements perform the work of the function. Some of the statements might be
calls to other functions. The function is terminated when a return statement
is executed or when the last statement in the function is executed. A return
statement defines the value that the function returns. This value is
converted to the type of the function before being returned. If the function
does not terminate with a return statement, the returned value is undefined.

- 64 -



Chapter 6 Functions

6.2 Nested Blocks

A compound statement is often referred to as a block. A function may
consist of many blocks and these blocks may be nested. A nested block refers
to a block that is enclosed by another block. The outermost compound
statement forms a block that encloses the entire function body. Many other
blocks may be nested within the function body.

Each block in a function may contain declarations. The only restriction is
that all declarations must precede the first statement in the block.
Normally, a function will contain declarations only at the beginning of the
outermost block. These declarations are visible to all the statements in the
function. Declarations that occur at the beginning of a nested block are
visible only to the statements inside it.

Declarations inside a nested block are local to the block. They are not
visible to outer level blocks. However, the declarations in an outer level
block are visible to the nested block. That is, unless the nested block
declares a variable with the same name as an outer level variable. If this
occurs, the outer level variable is no longer visible to the statements inside

the nested block.

sample()

{
int i, j, k;
i:j:k:l;

<

int i, j, k;

i=3j=k-=2;

printf("inner level block\n");

printf(" i=%d, j=%d, k=%d\n", i, j, k);
>

printf("outer level block\n');
printf(" i=%d, j=%d, k=Zd\n", i, j, k);

6.3 The Main Function

Program execution always begins in the function named main. The main
function is normally used without arguments. However, there are two arguments
that may be used if desired. By convention, the two arguments to main are
called argc and argv. Argc and Argv are used to access the command line
arguments that are typed when a program is executed. The command line

- 65 -



Functions Chapter 6

arguments can be used to pass information into a program. Argc is an integer
containing the argument count. This is the number of arguments entered on the
command line, each argument being separated by one or more blanks. Argv is an
array containing pointers to each of the arguments entered on the command
line. Argc then defines the number of elements in argv that point to command
line arguments. The following example program prints out the command line
arguments that are typed when the program is executed.

main(arge, argv)

int argc; /* number of command line arguments %/
char *argvi]; /#* pointers to arguments %/
{

int i

printf("arge = %Zd\n", arge);
for (i=0; i<argc; i++)
printf("argv[%d] = Zs\n", i, argv[il);

6.4 Static Functions

The static storage class may be applied to a function definition. The
effect of declaring a function to be static is that it becomes invisible to
functions in other source files. A static function is typically used when
creating a library of functions to be used by several different programs.
Such a library might contain functions that are used only by the other
functions in the library. For example, one function might simply perform a
small task for a larger function. Programs might never need to call the
function that performs the small task. Defining this function to be static
hides it from the programs that use the library.

static clip(x, y)
double #x, *y;:

{
if (*x > 100) *x = 100;
if (xy > 100) *y = 100;
b
printxy{x, y)
double x, vy;
{

clip(é&x, &y);
printf("x = %Zf, y = Zf\n", x, y);

- 66 -



Chapter 6 Functions

6.5 Calling Functions

A function call has the form:
function name(argl, arg2, ... argn)

The named function is called and the arguments argl ... argn. are passed to
the function, If the function requires no arguments, the function name must
be followed by an empty argument list, ().

A function call may appear in any C expression. The returned value of the
function is used as an operand in the evaluation of the expression. A
function call may also appear by itself. 1In other words, it is the only
operand of the expression. In this case, the returned value is simply
discarded. A call to a function of type void must appear by itself since no
value 1is returned.

6.6 Function Pointers

A function name that is not followed by an argument list does not result in
a function call. Rather, the result is a pointer to the named function. A
variable may be declared as a pointer to a function and then assigned to point
to a particular function.

Declaration of function pointer variables:

int (*get _byte)(); /*pointer to function returning int*/
double (*trig function)(); /*pointer to function returning double*/

In the previous declarations, the variable name is preceded by the * symbol
and followed by an empty argument list, (). The * indicates that the variable
is a pointer while the () indicates that it is a pointer to a function. The
type specifies the data type of the functions return value. The parentheses
around the variable name are necessary. Without them, a function would be
declared, not a variable. For example,

int *get byte();

declares a function named get byte that returns a pointer to an integer.

A function that is referenced as a pointer (no argument list) must be

- 67 -



Functions Chapter 6

declared. Otherwise, the compiler will not know that it is a function and
will consider it to be an undeclared variable.

Assigning values to function pointer variables:

int gete(); /* declare getc function */
double sin(); /* declare sin function %/
get byte = getc; /* get byte points to getc */
trig function = sin; /* trig function points to sin */

Through the use of the contents of operator (%), a pointer variable that
points to a function may be used to call the function. The contents of the
pointer variable is the location of the function.

Calling functions through pointer variables:

(*#get byte)(stdin); /* call the getc function */
(*trig_function)(1.0); /* call the sin function */

The function call through a pointer variable looks just like the
declaration of the pointer variable. The parentheses around the variable name
are necessary.

6.7 Recursion

Each time a function is called, memory is reserved to store its auto
(local) variables and then execution begins. The function has been
activated. The function remains active until it terminates by executing
either a return statement or the last statement in the function. The memory
reserved for storing auto variables is then released. The function has been
deactivated. The term recursion refers to a programming technique that
involves having more than one activation of a function at the same time.
There are two types of recursion, direct and indirect.

Direct recursion occurs when a function calls itself. The first call to
the function creates the first activation, reserving space for the auto
variables. The function begins executing and then encounters a call to
itself. This causes a second activation of the function, again reserving
space for the auto variables. Since the first activation of the function has
not terminated, there are now two activations of the function. Each
activation has its own area of memory reserved for the auto variables. This
process can continue, creating a new activation of the function each time the
call to itself is executed. At some point however, the function must cease
calling itself. Otherwise, there would be an infinite loop that would not
terminate until all available memory was used by the auto variables.
Therefore, the call to itself must be conditional. When a certain condition
exists, the function must finish execution and terminate (deactivate) rather

- 68 -



Chapter 6 Functions

than call itself again. When the function terminates, control is returned to
the previous activation. This process then continues until all the
activations have terminated and control is returned to the original caller,
The following example demonstrates direct recursion. The program computes

factorials by calling a recursive function. <(eg. 5! =5 * 4 * 3 % 2 % ] =
120)
Example:
main() /* program to compute n! (n factorial) */
{
int n;

float factorial();

printf("'<<< Program to compute n! >>>\n\
Enter an integer number: ");

scanf("d%", &n);

printf("%d! = %f'", n, factorial(n));

>

float factorial(n) /* recursive function to compute n! */
int n;
{
if (n == 1)
return (1);
else
return n * factorial(n - 1);

>

When the factorial function is called with the argument n, it calls itself
n-1 times. Each time it calls itself, it reduces the value of the argument n
by 1. When the value is equal to 1, it returns rather than calling itself
again. The table below shows the value of the argument n and the returned
value for each function activation assuming that the original value of n is 5.

activation value of n returned value
1 5 120
2 4 24
3 3 6
4 2 2
5 1 1

The other type of recursion is indirect. Indirect recursion occurs when a
function is activated through a series of function calls that it began. For
example, function_a calls function_ b, function_b calls function_c, then
function_c calls functlon a, Functlon a has two activations, with activations
of functlon b and functlon ¢ in between.

_69_






Chapter 7

Pointers and Arrays

7.1 Pointers

A pointer is a value corresponding to the address of an object in memory.
The words pointer and address are often used interchangeably. Both refer to a
location in memory. A pointer may point to an object of any data type.
However, all pointers require the same amount of storage, the amount required
to store a machine address. A pointer variable is declared using the *
operator. The * operator placed in front of a variable name declares the
variable as a pointer.

Example Pointer Declarations:

char ¢, *ptr_to_char; /* ptr_to_char points to a character */
short s, *ptr_to short; /* ptr_to_short points to a short */
int i, *ptr_to_int; /* ptr_to_int points to an int */
long 1, *ptr_to_long; /* ptr_to_long points to a long */
float  f, *ptr_to_float; /¥ ptr_to_float points to a float */
double d, *ptr_to_double; /* ptr_to_double points to a double */

A pointer variable is used to store the address of an object in memory.
The address of operator (&) is used to obtain the address of a variable
(object). Assuming the previous declarations, the following statements assign
addresses to the pointer variables.

ptr_to char = &c; /* address of variable c */
ptr_to _short = &s; /* address of variable s */
ptr_to_int = &1 /* address of variable i */
ptr_to_long = &l; /* address of variable 1 */
ptr_to_float = &f; /% address of variable f */
ptr_to_double = &d; /* address of variable d */

The contents of operator (¥) requires an operand that corresponds to the
address of an object in memory. The result of the operation is the wvalue of
the object stored at that address. Assuming the previous assignments, the
values of the variables ¢, s, i, 1, f, and d may be obtained using the pointer variabl



Pointers and Arrays Chapter 7

*ptr_to_char; /* value of ¢ */
*ptr_to _short; /* value of s */
*ptr_to_int; /* value of i */
*ptr_ to _long; /* value of 1 */
*ptr_to_ _float; /% value of f */
*ptr_to double, /* value of d */

A variable may even be declared as a pointer to a pointer. If more than
one * operator precedes,a variable name, the variable is declared as a pointer
to a pointer. The following declaration declares three variables, an int, a
pointer to an int, and a pointer to a pointer to an int.

int i;
int *ptr_to_int;
int **ptr_to_ptr_to_int;

The following statements assign values to each of the variables.

i=1;
ptr_to_int = &i;
ptr_to_ptr_to_int = &ptr_to_int;

Assuming the previous assignments, all of the following expressions access
the value of the variable i, in this case 1.

i; /* result = 1 */
*ptr_to_int; /* result = 1 */
**ptr_to_ptr_to_int; /* result = 1 */

The expression **ptr_to_ptr_to_int is evaluated as *(*ptr to_ptr_to_int).
The result of the expre381on kptr to_ptr_to_int is the value of ptr_to_int,
which is the address of i. The result of the expression *(*ptr_to ptr to 1nt)
then is the value of i.

7.2 Arrays

An array is a composite data type that is composed of a fixed number of
data elements which are all of the same data type. Any data type may be used
to declare an array. The elements of an array may even be declared as
pointers. An array can have any number of dimensions. The simplest type of
array is the single dimension array. The following declarations declare
single dimension arrays of various data types.

- 72 -



Chapter 7 Pointers and Arrays

3 /* 20 element array of characters ¥/

; /* 11 element array of integers */

]; /% 32 element array of pointers to
double precision floating point */

char s[20]
int i[11]
double *d[32

The elements of an array are accessed by specifying a subscript after the
array variable name. The first element of an array has a subscript of 0. The
last element of the array has a subscript of n-1, where n is the number of
elements in the array. The elements of the arrays in the previous declaration
are accessed as follows.

s[0], s[1], ... s[19]
if[ol, i[1], ... i[10]
d[ol, d[1], ... d[31]

When an array name is referenced without a subscript, the result is a
pointer to the beginning of the array. This is equivalent to the address of
the first element in the array. For example, s is equivalent to &s[0], i is
equivalent to &i[0], and d is equivalent to &4[0].

The C string is actually an array of characters. The element following the
last valid character in a string must contain the NULL character to indicate
the end of the string.

There is no limit to the number of dimensions in an array. The following
declarations declare two dimension arrays.

int tablel[10][10]; /* 100 element array of integers */
char names{90][20]; /* 1800 element array of characters */

The variable table is an array of 10 elements, each element being an array
of 10 integers. The variable names is an array of 90 elements, each element
being an array of 20 characters.

A multi-dimensioned array may be accessed in various ways. If the array
name is used without any subscripts, the result is a pointer to the beginning
of the array. Using the previous declarations, table[0] results in a pointer
to the beginning of of the first 10 element array of integers in table while
names[0] results in a pointer to the first 20 element array of characters in
names. The reference table[0][0] accesses the first integer in the first
array of 10 integers in table while the reference names[0][0] accesses the
first character in the first array of 20 characters in names.

With two-dimension arrays, the first subscript corresponds to the row and
the second to the column at which an element is stored. The elements of an
array are stored row major. This means that starting at the beginning of the
array, the first subscript of the array varies slowest when accessing elements
in the order stored. The following table illustrates how the table array
would be stored in memory.

- 73 -



Pointers and Arrays Chapter 7

table{0][0] table[0][1] tablef{0][2] ... table[0][9]
table[1][0] table[1][1] table{1][2] ... table[1][9]

.

table[8][0] table[8](1] table[8][2] ... table[8][9]
table[9][0] table[9][1] table[9][2] ... table[9]1[9]

7.3 Using Pointers with Arrays

A p01nter is a value that points to the location at which an object 1is
stored in memory. When an array is referenced without subscripts, the result
is a pointer to an object that happens to be an entire array.

The elements of an array may be accessed using a pointer rather than an
array subscript. The following example declares an array of integers and a
pointer to an integer,

int *ptr, i[20];

Then the following assignment statement assigns the variable ptr the
address of the beginning of the array i. Notice that the address of (&)
operator is not used because the result of an array name without subscripts is
a pointer to the beginning of the array.

ptr = 1i;

The first character element of array i can then be accessed using the
pointer variable. The expression *ptr would result in the value of the
element i[0]. Addition or subtraction may be used with the pointer variable
to cause it to point to another element in the array. The expression ptr++
would increment the p01nter variable so that it would then point to the
element i[l]. The expression *ptr would then result in the value of the
integer stored in the second element of the array i.

Notice that when a value is added (or subtracted) with a pointer, the
pointer actually changes by the value times the size of the object to which
the pointer points. If two pointers point to elements in the same array,
subtracting the pointers will result in the number of elements between the two
pointers, regardless of the type of the elements in the array.

A function that has an array as an argument can declare the array in either
of two ways. The argument may be declared as an array or as a pointer. How
the argument is declared determines how the elements of the array must be
accessed. The following function has two arguments that are arrays. One is
declared as an array variable and the other as a pointer variable. Notice

- 74 -



Chapter 7 Pointers and Arravs

that the array declaration specifies an empty subscript. The size of the
array is not effected by the declaration since arrays are passed as pointers.
The declarations are essentially equivalent. The only difference is the way
in which the elements of the arrays are referenced. The function assumes that
the last valid character in each array is followed by an element having the
NULL value (binary 0).

sample{arrayl, array2)
char arrayll], *array2;
{

int 1, count;

i = count = 0,

while (arrayl[i++]) count++;
printf("%d characters in arrayl\n", count);

count = 0;

while (*array2++) count++;
printf("%d characters in array2\n'", count);

7.4 Array Initialization

The elements of an array may be initialized when the array is declared.
The following is the form of an array declaration that includes initializers.

data-type nameln] = {value-l, value-2, ... value-n};
The values listed between the braces are assigned to the array elements

starting with the first element in the array. The following declaration
initializes the 5 elements of an array of 5 integers.

int i[5] = {0, 1, 2, 3, 4};
The previous declaration is equivalent to the following.
int i[5];:
i{0] = 0; i[1] = 1; i[2] = 2, i[3] = 3; i[4] = 4;
When initializers are used in an array declaration, the subscript may be

omitted and the compiler will create an array with the number of elements
specified in the initializer list. The following declaration is equivalent to

the previous one.

- 75 -



Pointers and Arrays Chapter 7

int i[] = {0, 1, 2, 3, 4);

The number of values in an initializer list may be less but not greater
than the number of elements in the array. If the number of values listed is
less than the size of the array, the compiler will initialize the remaining
elements to 0. The following declaration initializes the first 8 elements in
the array of 10 floating point numbers. The compiler initializes the last two
elements of the array to 0.

3

float number[10] = {0.0, 1.0, 2.0, 3.0,
4.0, 5.0, 6.0, 7.0 };
A character array may be initialized in two ways. Either the individual
character values may be listed or the character values may be specified as a
string constant. If specified as a string constant, the braces are not

necessary. The following two declarations are equivalent.

]

{!AF} !E!, EI!, !O!’ !UI’ f\o!};
"AEIOUM;

char s[]
char si]

Notice that the previous declarations create an array of 6 characters. The
compiler automatically appends the NULL character ('\0') to the end of a
string constant. Therefore, the declaration that specifies the individual
character values must include the NULL character for the two declarations to
be equivalent.

An array of pointers can be initialized. The following declaration
initializes an array of pointers to characters. FEach element of the array day
is a pointer to a string.

char *day[] = {"sunday",
"monday",
"tuesday",
"wednesday",
“thursday",
"friday",
"saturday'};

Multi-dimensioned arrays may also be initialized. The following
declaration initializes a two dimension array. When multiple dimensioned
arrays are initialized, the subscripts must be specified.

char names[5]{20] = {"George Jones ;
"Sam Smith ",
"Shirley Cartwright ";
""Debra Johnson ;
"Johnny Abercrombie '"};

- TH -



Chapter 8

Structures and Unions

8.1 Structures

A structure provides a means of defining a single variable that is actually
composed of several variables. A structure is a group of one or more
variables called members that are referenced using a single variable name as a
prefix. Unlike arrays, the elements (members) of a structure do not have to
be the same data type. There are various ways to create a structure. A
structure template defines the form of a structure but does not allocate
memory. A structure variable must be declared using the structure template to

allocate memory.
8.1.1 Defining Structures

A structure template has the following form.

struct struct-tag {
data-type member-name;

data-type member-name;

33

The struct-tag following struct is an identifier called a structure tag.
The structure tag is not required. The tag simply provides a name for the
structure template. If the structure template is tagged, then the name may be
used for later definitions and declarations. The structure tag serves a
purpose similar to a type name defined using typedef.

- 77 -



Structures and Unions Chapter 8

A structure is also a type. It is valid to use

struct ¢
int wvaluel;
int value2;
> a, b;

just as it is valid to use
int a, b;

The structure above declares a and b as structure variables with two
integer members. Since there is no tag, other variables cannot be declared
without redefining the structure. Tagging the structure template provides a
means of declaring other variables without redefining the structure.

Example:
struct date < /* Define a structure template to */
int month; /* contain a date */
int day;
int year;
¥;

Variables of the above structure type may be declared as follows.

struct date birthdate; /* ©birthdate is a structure
variable of type date */
struct date graduation; /* graduation is a structure

variable of type date */

The previous declarations declare two structure variables, birthdate and
graduation. Both of these variables have three integer members. If no
structure variables are given after a structure definition (as is the case for
date), then no storage is reserved. When the declarations are made for
birthdate and graduation, storage is reserved for the two structure
variables. Each of these variables require enough space to store three
integers. The following defines the structure named date and also declares
two variables.

struct date {
int month;
int day;
int year;
} birthdate, graduation;

The previous declaration reserves space for the two structure variables,
birthdate and graduation. The structure template named date may still be used
for later definitions and declarations of structure variables.



Chapter 8

Structures and Unions

A structure template may have another structure template as a member.

Example:

Notice the following things in the preceding example.

(D)
(2)
(3)
(4)

struct date {
int month, day, year;

s

struct address {
char street[30];
char city[20], state[3];
long zipcode;

Y3

struct name {
char last[20], first[20], middle_initial;
>3

struct pupil {
struct name fullname;
unsigned idnumber;
long ssn;
struct date birthdate;
struct address school_addr, home_addr;
int classcode;
int hours_completed, degree_code;
int major_code, minor_code;
float overall gpa, major_gpa;
} student;

Structure definitions used as members in the structure
named pupil are defined prior to the definition of pupil.

struct name fullname; declares a member variable
called fullname that is a structure of type name.

struct address school addr, home_addr; declares two
member variables that are structures of type address.
The data types of the members of the structures need not

be the same.

- 79 -



Structures and Unions Chapter 8

8.1.2 Referencing Structures

Members of a structure variable are referenced as follows.

variable-name.member-name

The member operator connects a member name to a structure variable name.
For example, members of the previously defined structure variable student are
referenced as follows.

student. fullname student.idnumber etc.

The reference student.fullname references a whole structure of type name.
The individual members of the structure are referenced by appending the
appropriate member name.

student.fullname.last student.fullname.first etc.

There is no limit to the level of nesting of structures. The whole
structure is referenced by the structure variable name. The members of the
structure are then referenced by appending a member name. If a member is a
structure, its members are referenced by appending another member name, etc.

The members of structures are assigned values in the same way as other
variables using the assignment operator. The type of a member determines the

type of value that may be assigned to it.

Whole structures may also be assigned. When assigning whole structures,
the structures must be of the same type.
8.1.3 Structure Initialization

Initialization of structure variables is very similar to initialization of
arrays. The structure variable name is followed by a list of initializers
enclosed in braces.

struct date birthdate = {3, 9, 55};

The above declaration declares the variable birthdate as a structure of
type date and assigns values to its three members. The following is equivalent.

- 80 -



Chapter 8 Structures and Unions

struct date birthdate;

birthdate.month = 3;
birthdate.day = 9;
birthdate.year = 55;

The following example illustrates how the previously defined structure
variable named student may be initialized.

struct pupil student = {

{"Public", "John", 'Q'}, /* struct fullname */
12345, 999999999, /% idnumber, ssn *
{7, 28, 1955}, /* struct birthdate */
{"Dorm Room 2612C", /* struct school addr */
"Anytown", "TX", 75075},
{100 Main Street South', /* struct home addr */
"Big city", "TX", 75000}, -
3, 32, 1, /* classcode,
hours completed,
degree_code */
60, 73, /* major code, minor_code */
3.0, 3.2%; /* overall gpa, major gpa */

8.1.4 Pointers to Structures

A pointer to a structure is declared as
struct struct—-tag *variable-nanme;

The * preceding the variable name declares the variable as a pointer to a
structure of the type specified by struct-tag.

Example:
struct address *addrptr; /* pointer to a structure of
type address */
struct name *nameptr; /* pointer to a structure of

type name */
A pointer must be assigned to point to a specific structure of the type

specified by the declaration. The following example assigns the pointer
variable addrptr the address of the structure variable permanent_addr.

struct address *addrptr, permanent_addr;
addrptr = &permanent_addr;

The structure pointer operator -> is used to access a member of a structure

- 81 -



Structures and Unions Chapter 8

using a pointer variable,

Example:
struct name ¢ /% define structure %/
char last[20];
char first{20];
char middle[207];
} *nptr, fullname; /* declare variables */
nptr = &fullname; /* assign nptr the address
of fullname */
nptr->last = "Jones'; /* assign values to the
members of fullname */

{(*nptr).first = "John';
aptr->middle = "Quincy';

Since nptr is a pointer to fullname, either method shown to assign values
to the structure members is valid. The () around (*nptr) are required because
the structure member operator has higher precedence than the contents of
operator. Without the (), the expression would be equivalent to *{(nptr.last).

8.1.5 Arrays of Structures

The following definition declares an array of structures.

gstruet name {
char last{25]:
char first[15]);
char middle;

} fullname[10];

The variable fullname is a 10 element array, each element being a structure
of type name. The reference fullname[0] accesses the complete structure in
the first element of the array. The reference fullname[().last accesses the
member named last in the first element of the array. The reference
fullname[0].last[0] accesses the first character in the member named last in
the first element of the array.

- 89 -



Chapter 8 Structures and Unions

8.1.6 Bit Fields

A member of a structure may be defined as a bit field. A bit field defines
the number of bits of storage that the member requires. A bit field is
specified by following the member name by a colon (:) and then the number of
bits required for storage. This is only allowed for members of type int or
unsigned. All bit field values are treated as unsigned integers in
expressions. Bit fields allow several members of a structure to be stored in
a single integer. For example, if the size of an integer is 16 bits, then 16
one bit members may be stored in a single integer. Or perhaps you might store
4 four bit members in a single integer.

The maximum size of a single bit field is the number of bits in an int.
Consecutive members of a structure that are declared as bit fields are stored
in consecutive bits of an integer. The starting bit may be either the least
or most significant bit of the integer, depending on the machine. A bit field
can not span across an int boundary. Therefore, a bit field that requires
more bits than the number of bits remaining in an int will be stored starting
at the next int boundary.

The minimum size of a bit field is 1. However, the sizeof(int) is the
miminum amount of storage allocated for each consecutively declared bit field
members.,

When declaring structure members using bit fields, you may simply specify a
bit field (:n) without a data type or member name. This is used for padding
to force the next bit field member to start at a particular bit within the
int. A field width of 0 may be specified to force the next bit field member
to start at the next int boundary. Padding is not necessary if the next
structure member is not a bit field. Structure members that are not bit
fields always begin at the next int boundary if they follow a bit field
member.

The following example illustrates a structure that has members declared
using bit fields.

struct student_record {
char name[40];
unsigned out_of state:l;
unsigned tb_test:1;
unsigned physical:1;
unsigned govt_aid:1;
unsigned housing:1;
unsigned parking:l;
unsigned registered:l;
unsigned category:3;

:0;

char last_initial;

- 83 -



Structures and Unions Chapter 8

The student_record structure makes use of bit fields to save space. The
members from out of state to registered are all 1 bit fields that are used to
represent a true/false state. True can be represented by the bit being set
(1) and false by the bit being clear (0). Only 7 bits are required to store
these 7 members. The last bit field member, category, uses 3 bits of
storage. A field of 3 bits can represent a number between 0 and 7. In all,
the bit field members require only 10 bits of storage. This is less than the
sizeof(int). The :0 is used to force the next member to the next int
boundary. However, it is not required since the next member is not a bit
field. The sizeof(struct student_record) is equal to 41 + sizeof(int) since
the bit field members all fit in a single integer. Assigning values to bit
field members is identical to any other assignment using structure members.
You should be careful not to assign a value outside the range of the bit
field. For example, a one bit field can only have two values, 0 or 1.

8.2 Unions

A union has the same form as a structure. However, all the members of a
union share a common area of memory. This allows a single area of memory to
be used for storing several different data types. The data types of the
members of a union may all be different. The amount of memory allocated to a
union variable is the size of the largest member in the union.

union union-~tag <
data-type member-name;
data-type member-name;
} variable-name;

As with structures, the union-tag and variable-name are optional.

The union provides a way to access the same area of memory in different
ways. Each of the union members overlap one another in the same area of
memory. Different parts of this area of memory may be accessed by referencing
the appropriate union member. The following example illustrates a union with
two members sharing the same area of memory. One of the members is an
unsigned integer. The other is a structure that is composed of 16 single bit
members. The two members are exactly the same size provided that the
sizeof(int) is 16. The structure member then overlaps the integer member
exactly. The structure member can then be used to access the individual bits
of the integer member. The example shows how the union, together with bit
fields, may be used to set the bits of the format flag that is used with the
ftoa library function. To use bit fields in this manner, you must know a
little about the hardware of the computer. On some computers, integers are
stored with the most significant bit first. On others, the least significant
bit is first. Therefore, a program like this example is machine dependent.

- 84 -



Chapter 8

Structures and Unions

On some machines, the order of the bit field members should be reversed.

union format ¢
unsigned all;

’s

struct {
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

} part;

main()

{

int i}

char s[801];

bit0O:
bitl:
bit2:
bit3:
bité:
bit5:
bitb:
bit7:
bit8:
bit9:

bitl0:
bitll:
bitl2:
bitl3:
bitlé:
bitl5:

W wa wa W e we we

ok et et et et et et fad et

ot et e 2 et bk Wl W W

Me we ws we we we

union format flag;

flag.all=0;

flag.part.bit4=1;
flag.part.bit6=1;
ftoa(1000., s, flag.all, 10, 2);

puts(s);

/*
/%
/*
/*
/*
/*
/*
/%
/*
/%
/*
/%
/*
/*
/%
/*
/*
/*
/%

assumes 16 bit int
all 16 bits
individual bits
exponential format
no trailing 0's
sign follows value
include sign
leading $ sign
leading *'s
include commas
change + to blank
unused

unused

unused

unused

unused

unused

unused

unused

/* turn all bits off
/* turn on leading $§ sign */
/* turn on include commas */

- 85 -

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/






Chapter 9

Statements

9.1 Simple and Compound Statements

An expression followed by a semicolon (;) is a statement. The semicolon is
a statement terminator and not a statement separator as in other languages
such as Pascal. Braces {} are used to group several statements into a compound
statement. The braces cause the enclosed statements to be treated as one
statement rather than several individual statements. A compound statement may
be used anywhere a simple statement may be used. No semicolon appears after a
right brace since braces are not statements,

9.2 Conditional Statements

9.2.1 if

An if statement has the form:
if (expression) statement;

If the expression is non-zero (true), then the statement is executed. If
the expression is zero (false), then the statement is not executed.
Example:

toupper(c)

int c¢;

{

if (¢ >='a' || e <= 'z') ¢ -= 32;
return c¢;

- 87 -



Statements Chapter 9

9.2.2 else

An else statement has the form:
else statement;

The else statement may only be used in conjuction with an if statement. An
else statement is matched with the closest unmatched if statement. The if
statement must precede the else statement. If the expression of the matching
if statement is zero (false), then the else statement is executed. If the
expression of the matching if statement is non-zero (true), then the else
statement is not executed.

Example:

f#define TRUE 1
#define FALSE 0

isspace(c)

int ¢;

{
if (¢ == "\t" || ¢c=="\n" || ¢ =="' ') return TRUE;
else return FALSE;

A common programming technique for selecting one of several statements to
execute is to use a sequence of if and else statements. The following is the
form of such a sequence.

if (expression)
statement;

else if (expression)
statement;

else if (expression)
statement;

else
statement;

The previous sequence of if-else statements will select and execute only
one of the statements. The first expression that results in a non-zero (true)
value will cause the immediately following statement to be executed. The
remaining statements in the sequence are then skipped. If none of the
expressions result in a true value, then the last else statement is executed.
The following example is an illustration of an if-else sequence.

- 88 -



Chapter 9 Statements

Example:
int alpha, digit, space, other;

count(c);
int c;
{
if (isalpha(ec))
alpha++; )
else if (isdigit(c))
digit++;
else if (isspace(c))
space++;
else
other++;

9.2.3 switch

The switch statement has the form:
switch (expression) {

case constl: statement;
statement;

case const2: statement;
statement;

case constn: statement;
statement;

default: statement;
statement;

)

The switch statement is used to select a statement or sequence of
statements to execute based on the value of an expression. The expression is
evaluated and the value compared to the constant values following each case
keyword. These values must be integer or character constants or constant
expressions. Execution begins at the statement following the constant that
matches the value of the expression. If none of the constant values match the
value of the expression, execution begins at the statement following the
default keyword. The default case is optional. If it is omitted and no match
is found, then none of the statements inside the switch statement are
executed.

- 89 -



Statements Chapter 9

All of the statements inside the switch statement that follow the matching
constant value are executed. In other words, all the statements following the
matched case to the end of the switch statement are executed, not just the
statements following the matched case. Since this is normally not desired,
the last statement in each individual case is the break statement. The break
statement causes the remaining statements inside the switch to be skipped.

Example:

int digit, space, other;

count(c)
int ¢;
{
switch (¢) |
case "0’
case ']’
case '2'
case '3' :
case 4!
case '5' :
case '6' :
case '7'" :
case '8' :
case '9' : digit++;
break;
case '"\t':
case '\n':
case ' ' : space++;
break;

default: other++;

b

Notice that multiple case constants may be specified without any following
statements. Execution begins at the first statement following the matched
constant,

9.3 Looping Statements

9.3.1 while

The while statement has the form:

while (expression) statement;

- 90 -



Chapter 9 Statements

The while statement uses a conditional expression to determine whether or
not to execute a statement. First the expression is evaluated. While the
expression is non-zero (true) the statement is repetitively executed. When
the expression is zero (false), the while statement is terminated.

Example:

#include '"stdio"
main()

{
int ¢, count = 03
while ((¢ = getchar()) != EOF) {
putchar{(c);
count++;

by

printf("%d characters copied", count);

9.3.2 do-while

A do-while statement has the form:
do statement while (expression);

The do~while statement uses a conditional expression to determine whether
or not to continue executing a statement. First the statement is executed and
then the expression is evaluated. The statement is repetitively executed
while the expression is non-zero {true). When the expression becomes zero
(false), the do-while statement is terminated.

Example:

#include "stdio"

main()

{
int c¢;
do {

¢ = getchar();
if (isdigit(c}) count++;
b
while {c¢ != EOF);
printf("%d alphabetic characters’, count);

- 9] -



Statements Chapter 9

9.3.3 for

A for statement has the form:
for (exprl; expr2; expr3) statement;

The for statement is a general looping statement that is normally used to
execute a statement a specific number of times. First exprl is evaluated.
This expression is evaluated only once. This is usually an assignment
statement that initializes a counter variable. Then expr2 is evaluated. This
is the conditional expression. If expr2 is non-zero (true), the statement is
executed and then expr3 is evaluated. Expr3 is usually an expression that
increments the counter variable. While expr2? is non-zero {true), the
statement and expr3 are repetitively executed. When expr2 is zero (false),
the for statement is terminated.

A for statement is equivalent to the following statements.

exprl;

while (expr2) {
statement;
expr3;

Any of the 3 expressions may be omitted. The semicolon must remain as a
place holder for the missing expression. For example, for(;;) is perfectly
legal. Since there is no conditional expression, this is an infinite loop.

Example:

main()
{
int i
char digit[10];
for (i = 0; 1 < 10; i++) {
digit[i] = i + '0';
printf("digit[%d] = Zc\n", i, digit[i]);

9.4 bresk

The break statement causes an immediate exit from a for, while, do-while,
or switch statement. If one of these statements is inside another, the break
statement exits the immediately enclosing statement. For example, a break

_92...



Chapter 9 Statements

statement inside a switch statement that is inside a for statement causes only
the switch statement to be exited.

In the following example, the break statement is used to exit both a switch
statement and a for statement.

Example:

#include "stdio"
main()
{
int ¢, vowels = 0, lines = 0;
for(;;)
c = getchar();
switch (toupper(c)) {

case 'A' :
case 'E' :
case 'I' :
case '0' :
case 'U' : vowels++;

break;
case '\n': lines++;
)
if (c == EOF) break;
)

printf("%d vowels in %d lines'", vowels, lines);

9.5 continue

The continue statement may be used inside a for, while, or do~while
statement. The continue statement causes the next iteration of the enclosing
loop to begin. Continue is related to break in that both cause execution of
the current loop iteration to terminate. The difference lies in the fact that
continue begins the next iteration of the enclosing loop while break exits the
enclosing loop. Continue causes execution to jump to expr3 of a for statement
and to the conditional expressions in while and do-while statements.

The following function reads an integer from the file fp. The continue
statement is used to skip over leading whitespace characters.

- 93 -



Statements Chapter 9

Example:

#include "stdio"
getint(fp)

FILE *fp;

{

int negative = 0, value = 0;
for(;;)
¢ = getc(fp);
if (isspace(c)) continue;
if (¢ == '-")
++negative;
c = getc(fp);

if (!isdigit(c)) return EOF;
while (isdigit(c))
value = value * 10 + ¢ - '0';
¢ = getc(fp);
}
ungetc(c, fp);
if (negative) return -value;
else return value;

9.6 goto and labels

The goto statement has the form:
goto identifier;
A labeled statement has the form:

identifier: statement;

The goto statement is used to branch to a labeled statement. A statement
is labeled by placing an identifier followed by a colon in front of the
statement. The goto statement then references the identifier.

- 94 -



Chapter 9 Statements

Example:

main()

{

goto end;

puts('"This is not printed');
end: puts('goto labeled statement');

}

9.7 return

The return statement has the form:

return expression;

The return statement is used to exit a function. The result of the
expression is the value returned by the function. The expression is
optional. If no expression is given, the value returned is undefined.

Example:
tolower(c)
int c¢;

{

if (¢ >= 'A' && ¢ <= 'Z') return ¢ + 32;
else return c;

9.8 null

The null statement has the form:
5
The null statement may be used anywhere a statement is legal. It is useful

with loops when there are no statements inside the loop. The following loop
reads characters until a non-whitespace character is read.

while (isspace(c = getchar());

....95....






Chapter 10

Input and Qutput

When a program begins execution, three files are automatically opened:

stdin is opened for reading (input device: keyboard)
stdout 1is opened for writing (output device: screen)
stderr is opened for writing (output device: screen)

note: These files are not automatically opened if the
main function is named main rather than main.

The stdin and and stdout files may be remapped to other devices (such as
disk files) when a program is executed. The System Implementation Manual
explains how to remap stdin and stdout. Stderr is always mapped to the
screen.

Stdin, stdout, and stderr are file pointers defined in the standard header
file, stdio. Some of the standard input and output functions use these file
pointers implicitly. Others require that a file pointer be specified as ome
of the arguments to the function. Some of the functions return the values EOF
or NULL. Both of these values are defined in the standard header file. A
return value of EOF or NULL indicates that either the end of file or an error
was detected.

10.1 Opening and Closing Files

All input and output is performed through an opened file. The fopen
function is used to open a file. Once a file is no longer needed, it should
be closed. The fclose function is used to close an opened file.

_97_



Input and QOutput Chapter 10

16.1.1 fopen

Format:

fp = fopen(name, mode);

FILE *fp; /% file pointer */

char *name; /* file name %/

char *mode; /% access mode */
Description:

The fopen function opens a file. The name specifies the name of the file.
The System Implementation Manual describes device names that may also be
used. The mode specifies how the file will be accessed. The three access
modes are:

"r' to open the file for reading
"w" to open the file for writing
"a" to open the file for appending

A file must exist to be opened for reading. Otherwise, the function
returns an error indication. A file need not exist to be opened for writing
or appending. If it doesn't, a file will be created. Opening a file for
writing erases an existing file. Opening a file for appending causes
subsequent output to be appended to the end of an existing file.

Returns:

fp = pointer if successful

NULL if unsuccessful
Example:
main()
{

FILE  *fp;
fp = fopen{'database'", "w'");

~ 98 -



Chapter 10 Input and Qutput

10.1.2 fclose

Format:

status = fclose(fp);

int status; /% return status */
FILE *fp /* file pointer */
Description:

The fclose function closes the file pointed to by the file pointer fp. All
open files are closed automatically when a program terminates normally or when
the exit function is called. However, the fclose function allows you to close
a single file at any given time. There are two reasons for closing a file
explicitly. First, the contents of an output file that is not properly closed
may be lost. If a program abnormally terminates, the opened files are not
automatically closed and the contents of any opened output files will probably
be lost. Second, there is a limit to the number of files that may be open at
a given time. This limit is defined in the standard header file as MAXFILES.
By closing a file when it is no longer needed, the file pointer becomes
available for use by another file.

Returns:
status = 0 if successful
~1 if unsuccessful
Example:

#include "stdio”
main()

{
int status;
FILE *fp;
fp = fopen('database', "w');
status = fclose(fp);

- 99 -



Input and Output Chapter 10

10.2 Character 1/0

There are several functions that perform input or output a single character
at a time.

10.2.1 getchar

Format:
¢ = getchar();
int c;
Description:

The getchar function returns the next character from the file pointed to by
stdin,

Returns:

¢ = character if successful
EOF if unsuccessful

Example:

#include "stdio"
main()
{
int c;
while ((c = getchar()) != EOF);

- 100 -



Chapter 10 Input and Output

10.2.2 putchar

Format:

status = putchar(c);

int status; /* return status */
int c; /* character */
Description:

The putchar function outputs the character ¢ to the file pointed to by
stdout.

Returns:

status = ¢ if successful
EOF if unsuccessful

Example:

#include "stdio"
main()

{
int c;
while ((c = getchar()) != EOF)
putchar(c);

10.2.3 getc

Format:
c = getc(£fp);

int c;
FILE *fp;

Description:

The getc function returns the next character from the file pointed to by
fp.

- 101 -



Input and Output Chapter 10

Returns:

¢ = character if successful
EOF if unsuccessful

Example:

#include "stdio"
main()
{ .
int c;
FILE *input;
input = fopen("infile'", "r");
if (input != NULL)
while ((c = getc(input)) != EOF);

10.2.4 putce

Format:

status = putc(c, fp);

int status; /* return status */

int c; /* character */

FILE *fp; /* file pointer */
Description:

The putc function outputs the character ¢ to the file pointed to by fp.

Returns:

status = ¢ if successful
EOF if unsuccessful

Example:

#include "stdio"

main()

{
int c;
FILE *input, *output;
input = fopen("infile'","r");

output = fopen("outfile'", "w");
if (input != NULL && output != NULL)
while ((¢ = getc(input)) != EOF)
pute(c, output);

- 102 -



Chapter 10 Input and Output

10.2.5 ungetc

Format:
status = ungetc(c, fp);
int status;
int c;
FILE *fp;

Description:

The ungetc function returns the character ¢ to the input file pointed to by
fp. The next character received from this file will then be the returned
character.

Returns:
status = character if successful
EOF if unsuccessful
Example:

#include "stdio"
getnumber (fp);
FILE *fp;
{
int c;
int number = 0;
while ((c = getc(£fp)) != EOF && isspace(c));
if (!isdigit(c)) return EOF;
else ¢
while(isdigit(c)) ¢
number = 10 * number + (c - 48);
c = getc(fp)
)
ungetc(c, fp);
return number;

- 103 -



Input and Output Chapter 10

10.3 string I/0

The following functions input or output a string of characters. The input
functions read an entire line of characters from the input file. Input is
terminated when the newline character ('\n') is encountered. The output
functions write a string of characters to the output file. The end of a
string is marked by the NULL character ('\0').

10.3.1 gets

Format:

status = gets(s);

int status; /* return status */
char *g; /* string buffer */
Description:

The gets function reads the next line from the file pointed to by stdin
into the string buffer pointed to by s. Characters are read into the string
buffer until the newline character is encountered. The newline character is
then discarded and a NULL character is appended to mark the end of the
string.

Returns:
status = s if successful
NULL if unsuccessful
Example:

#include "stdio"
main()

{
char s[81];
while (gets(s) != NULL);

- 104 -



Chapter 10

10.3.2 puts

Format:

status = puts(s);

int status; /* return status */
char *g; /* string buffer */
Description:

Input and Qutput

The puts function writes the string of characters pointed to by s to the
file pointed to by stdout. Characters are written from the string buffer to

the file until the NULL character is encountered.

The NULL character is then

discarded and the newline character is written to start a new line.

Returns:
status = s if successful
EOF if unsuccessful
Example:

#include "stdio"
main()

{
char s{81];
while (gets(s) != NULL) puts(s);

10.3.3 fgets

Format:

status = fgets(s, n, fp);

int status; /* return status
char g /* string buffer
int n; /* size of buffer
FILE *fp; /* file pointer

*/
*/
*/
*/

- 105 -



Input and Output Chapter 10

Description:

The fgets function reads the next line from the file pointed to by fp into
the string buffer pointed to by s. Characters are read into the string buffer
until the newline character is encountered or until n~1 characters have been
read, which ever occurs first. The argument n prevents the function from
reading characters after the buffer becomes full. The newline character 1is
passed through to the string buffer. A NULL character is then appended to
mark the end of the string.

Returns:
status = g if successful
NULL if unsuccessful
Example:

#include "stdio"
main()
{
#define BUFSIZE 81
char s[BUFSIZE];
FILE *input;
input = fopen("infile", "r");
if (input != NULL)
while (fgets(s, BUFSIZE, input) != NULL);

10.3.4 fputs

Format:

status = fputs(s, fp);

int status; /* return status %/

char *s; /* string buffer */

FILE *fp; /* file pointer %/
Description:

The fputs function writes the string of characters pointed to by s to the
file pointed to by fp. Characters are written from the string buffer to the
file until the NULL character is encountered. The NULL character is
discarded.

- 106 ~



Chapter 10 Input and Output

Returns:
status = s if successful
EOF if unsuccessful
Example:

#include "stdio"
main()
{
#define BUFSIZE 81
char s[BUFSIZE];
FILE *input;
input = fopen("infile", "r');
output = fopen("outfile", "w'');
if (input != NULL && output != NULL)
while (fgets(s, BUFSIZE, input) != NULL)
fputs(s, output);

10.4 Formatted I/0

The following functions allow formatted input or output of characters,
strings, and numbers. Each requires a format string as an argument.
Following the format string is a list of other arguments. For input
functions, the arguments are addresses of the variables that store the data
read from the input file. For output functions, the arguments are variables
(or constants) containing the data that is written to the output file.

The format string describes the format of the input or output data. A
format string may contain ordinary text and/or format conversion
specifications. A format conversion specification is required for each
argument that follows the format string. The first conversion specification
in the format string is matched with the first argument following the format
string. The second conversion specification is matched with the second

argument and so on.

The format conversion specifies the type of data being input or output. It
specifies whether the data is a single character, a string of characters, or
one of the numeric data types. Numeric data types must be converted from
string to binary format during input and from binary to string format during
output.

- 107 -



Input and OQutput Chapter 10

10.4.1 Input Format Strings

An input format string may contain any of the following:

Whitespace Blanks, tabs, and newlines are ignored.
Characters All other characters except % are expected to match the

next non-whitespace character in the input. This is used
to skip over characters in the input.

Conversions A conversion specification causes the next input field to
be read. The specification begins with the character %,
followed by an optional assignment suppression character
*, followed by an optional maximum field width, followed
by the conversion character.

An input field is defined by the type of data it contains. For all data
types except character, an input field begins with the next non-whitespace
character in the input. For strings, the field extends to the next whitespace
character. For numeric data, the field extends to either the next whitespace
character or the next invalid numeric character, whichever occurs first. For
character, the field is simply the next character.

When an input field is read, the value is normally assigned to one of the
arguments (variables). However, if the conversion specifies the assignment
suppression character *, the assigoment is not made. The assignment
suppression character tells the input function to discard the input field
rather than assign it to a variable. A conversion specification that includes
the assignment suppression character is not matched with an argument following
the format string. Therefore, an argument should not be provided for
conversions that specify assignment suppression.

The optional field width specifies the maximum number of characters in an
input field. The field width should be specified as a positive integer. When
a field width is specified, the next input field is defined as the smallest of
its actual width or the specified maximum width.

The conversion character specifies the type of the input field. Some of
the conversion characters may be preceded by the letter 1.

- 108 -



Chapter 10

d or 1d

o or lo

X or 1lx

Input and OQutput

A decimal integer is expected in the input. For d, the
matching argument should be a pointer to an int. For 1d,
the matching argument should be a pointer to a long. All
leading whitespace characters are skipped. All
consecutive decimal digits are then read, converted to an
integer value, and then assigned.

An octal integer (with or without a leading 0) is expected
in the input. For o, the matching argument should be a
pointer to an int. For lo, the matching argument should
be a pointer to a long. All leading whitespace characters
are skipped. All consecutive octal digits are then read,
converted to an integer value, and then assigned.

A hexadecimal integer (with or without a leading 0x) is
expected in the input. For x, the matching argument
should be a pointer to an int. For 1x, the matching
argument should be a pointer to a long. All leading
whitespace is skipped. All consecutive hexadecimal digits
are then read, converted to an integer value, and then
assigned.

A short decimal integer is expected in the input. The
matching argument should be a pointer to a short. All
leading whitespace is skipped. All comsecutive decimal
digits are then read, converted to an integer value, and
then assigned.

A single character is expected in the input. The matching
argument should be a pointer to a char. The next
character is read and then assigned.

A string of characters is expected in the input. The
matching argument should be a pointer to an array of

char. An array name without subscripts is treated as a
pointer to the first element in the array. The array must
be large enough to hold the input string plus a
terminating NULL character ('\0'). All leading whitespace
is skipped. All consecutive non-whitespace characters are
then read and assigned.

- 109 -



Input and OQutput

f or 1f

e or le

Chapter 10

A floating point number is expected in the input. For f,
the matching argument should be a pointer to a float. For
1f, the matching argument should be a pointer to a

double. All leading whitespace is skipped. All
consecutive characters comprising a legal floating point
number are then read, converted to a floating point value,
and then assigned to the floating point variable. A legal
floating point number consists of an integer part, a
fraction part, and an exponent part. Either the integer
part or fraction part may be missing but not both. The
exponent part may be missing.

This is equivalent to f and 1f.

A dynamic string is expected in the input. The matching
argument should be a pointer to a dynamic string

variable. All leading whitespace is skipped. All
consecutive non-whitespace characters are then read and
assigned to the dynamic string variable. A dynamic string
is an extended data type that is defined in the standard
header file as STRING. There are several functions
described in the System Implementation Manual that use
dynamic strings.

- 110 -



Chapter 10 Input and Output

The following examples assume that the input stream is:

123 456 789
number of
Conversion Spec characters read values input
%c 1 !
%d 3 123
%Z1d 3 123
Zx 3 291
%o 3 83
%u 3 123
Zh 3 123
if 3 123.
Z1f 3 123.
%s 3 "123"
%dZf%s 14 123, 456., "789"
Z*s%c 4 !
ZsZ*ckd 7 123", 456
%2s%e 3 "av, '3
%2s7%d%2s 6 "12', 3, 45"

10.4.2 Output Format Strings

An output format string may contain any of the following:

Characters All characters except % are simply written to the output.
Conversions A conversion specification causes the next argument to be

converted and output. The conversion specification begins
with the character %, followed by an optional left
adjustment character -, followed by an optional number
specifying the minimum field width, followed by an
optional number specifying the precision (must be preceded
by a period), followed by the conversion character.

The output field width is determined by the data type of the argument. A
character has a field width of one. A string has a field width equal to the
number of characters in the string. A number has a field width equal to the
number of digits required to represent the number.

The optional left adjustment character -, causes the argument to be left
justified in its field. This has no effect unless a minimum field width is
specified.

- 111 -



Input and Qutput Chapter 10

The optional field width specifies the minimum field width for an
argument. If the field width required to represent the argument is greater
than the minimum field width, then the minimum field width has no effect.
However, if the minimum field width is greater, then the the output field is
padded on the left (or right if left justification is specifed) to fill out
the minimum width. The padding character is normally a blank. However, if
the minimum field width is specified with a leading 0, the padding character
is a zero.

The optional precision is used only for string or floating point
arguments. The precision is specified as a positive integer number preceded
by a period. For string arguments, the precision specifies the maximum number
of characters to output from the string. For floating point arguments, the
precision specifies the number of digits to output to the right of the decimal
point. The default precision for floating point arguments is 6.

The conversion character specifies the type of the output data. Some of
the conversion characters may be preceded by the letter 1.

d or 1d The output format is signed decimal. For d, the matching
argument should be a short or int value. For 1d, the
matching argument should be a long value.

o or lo The output format is unsigned octal. For o, the matching
argument should be a short or int value. For lo, the
matching argument should be a long value.

x or 1lx The output format is unsigned hexadecimal. For x, the
matching argument should be a short or int value. For 1x,
the matching argument should be a long value.

u The output format is unsigned decimal. The matching
argument should be an unsigned int value.

c The output format is a single character. The matching
argument should be a char value.

s The output format is a sequence of characters. The
matching argument should be a pointer to a string of
characters. The string must be terminated by a NULL
character ('\0').

e The output format is exponential. Exponential format is
used to represent floating point numbers in the form
[-]m.nnonnnEsxx, where the minus sign is printed if the
number is negative, the number of n's is defined by the
precision, and E represents the exponent (s is the sign of
the exponent and xx is the integer value of the
exponent). The matching argument should be a float or
double value.

- 112 -



Chapter 10

Input and Qutput

The output format is fixed point. Fixed point format is
used to represent floating point numbers in the form

[~ ]mmm.nnnnnn, where the minus sign is printed if the
number is negative (blank if positive) and the number of
n's is defined by the precision. The matching argument
should be a float or double value.

The output format is the shorter of the e or f formats.

In either case, the non-significant trailing zeros are not
printed. The matching argument should be a float or
double.

The output format is a dynamic string. The matching
argument should be a pointer to a dynamic string. A
dynamic string has the type STRING, defined in the
standard header file.

Any other characters that follow a % character in the output format string
are simply printed. For example, the sequence %% in the format string would
cause the single % character to be printed.

In the following examples, the fields are bounded by : to show exactly what

is being output.

The conversion specification is given, then the field as it

would look after being output.

- 113 ~



Input and Qutput

Output Formatting for Strings

The string is "I am an old C dog." which has 18 characters.

conversion spec

(1) %15s
(2) 7%-15s
(3) %25s
(4) %-25s

(5) 7%25.15s
(6) %-25.15s

(7) %.12s

Right justifies and pads unused field width with blanks.
Left justifies and pads unused field width with blanks.
Right justifies a maximum of 15 characters in a field width

the entire string since the minimum field width

output field

am an old C dog.:
am an old C dog.:

I am an old C dog.:

am an old C dog.

I am an old C d
am an old C d
am an old :

than the length of the string.

the entire string since the minimum field width

than the length of the string.

of 25 characters,

Left justifies a maximum of 15 characters in a field width

of 25 characters.

Explanation

(1) Outputs
is less

(2) Outputs
is less

(3)

(4)

(5)

(6)

(7

Output Formatting for Numbers

Outputs a maximum of 12 characters.

Assume the following variable declarations:

short
int
long
float
double

8
i
1
f
d

it

]

i

123;

12345;
1234567,
12.34560;
-123456.789;

- 114 -

o
.

M
-

Chapter 10



Chapter 10

conversion spec variable output field

(1) %oiod s :0000000123:
(2) %-10d i 112345

(3) %101d 1 1234567:
(4) 7%5f f :12.345600:
(5) %5.2f d :~123456.79:
(6) %10e f :1.234560E+01:
(7) %10.2e d : =1.23E+05:
(8) %10.5g f 12.3456:
(9) 7%5.2g d :~1.23E+05:

Explanation:

(1) The short integer is right justified. The padding
character is a zero since the minimum field
width has a leading zero.

(2) The integer is left justified.

(3) The long integer is right justified, padded with
blanks,

(4) The float requires a 9 character field, including
the default precision of 6 digits to the right
of the decimal point.

(5) The double requires a 10 character field. Notice
that floating point numbers are rounded before
being truncated.

(6) The float requires a 12 character field when printed
in exponential format. The default precision is 6.

(7) The float is right justified and printed in
exponential format with a precision of 2.

(8) The float takes fewer characters in fixed format.
Notice that trailing non-significant zeros are
not printed.

(9) The float takes fewer characters in exponential format.

10.4.3 scanf

Format:

status = scanf(fs, argl, arg2, ... argn);

int status; /* return status */
char *fs; /* pointer to format string */

- 115 -

Input and Output



Input and OQutput Chapter 10

Description:

The scanf function reads values from the file pointed to by stdin and
assigns them to the arguments, argl through argn. The fs argument points to
the format string that tells scanf the data type of each of the other
arguments passed to it. Argl through argn must be variable addresses since
scanf stores the values read in the memory locations pointed to by argl
through argn. The format string must contain a format conversion
specification for each of the arguments, argl through argn. Any other text in
the format string simply causes matching text in the file to be skipped.

Returns:

status = number of values assigned if successful
number of values assigned if error
EOF if end of file

Example:
main()
{
char c;
short S
int i
unsigned u;
long 1;
float f;
double d;
char string([81];
printf("Input Using Scanf:\n\n");
scanf("%c, %h, %d, %u, %14, %Zf, Z1f, Zs",
&c, &s, &i, &u, &1, &f, &d, string);
¥

10.4.4 printf

Format:
status = printf(fs, argl, arg2, ... argn);

int status; /* return status */
char *fs; /* pointer to format string */

- 116 -



Chapter 10 Input and Output

Description:

The printf function writes argl through argn to the file pointed to by
stdout. The fs argument points to the format string that tells printf the
data type of each of the other arguments passed to it. The format string must
contain a format conversion specification for each of the arguments, argl
through argn. Any other text in the format string is simply written to
stdout.

Returns:

status = 0 if successful
EOF if unsuccessful

Example:
main()
{
char ¢ = 'a';
short s = 127;
int i = 32767;
unsigned u = 65535;
long 1 = 100000;
float f = 1.23456;
double d = 1.23456789;
char string{] = "TheEnd.";
printf("Output Using Printf:\n\n");
printf("%c %d %d %Zu %1 %f Zf Zs",
c, s, i, u, 1, £, d, string);
¥

10.4.5 fscanf

Format:

status = fscanf(fp, fs, argl, arg2, ... argn);

int status; /* return status */
FILE *fp; /* file pointer ¥/
char *fs; /% pointer to format string */

- 117 -



Input and Output Chapter 10

Description:

The fscanf function reads values from the file pointed to by fp and assigns
them to the arguments, argl through argn. The fs argument points to the
format string that tells fscanf the data type of each of the other arguments
passed to it. Argl through argn must be variable addresses since fscanf
stores the values read in the memory locations pointed to by argl through
argn. The format string must contain a format conversion specification for
each of the arguments, argl through argn. Any other text in the format string
simply causes matching text in the file to be skipped.

Returns:

status = number of values assigned if successful
number of values assigned if error
EOF if end of file

Example:
main()
{
char (o
short s;
int i;
unsigned u;
long 1;
float £;
double d;
char string[81];
printf("Input Using Fscanf:\n\n'");
fscanf(stdin, "%c, %h, %d, %Zu, %14, %f, %1f, %s",
&c, &s, &i, &u, &1, &f, &d, string);
>

10.4.6 fprintf

Format:

status = fprintf(fp, fs, argl, arg2, ... argn);

int status; /* return status */
FILE *fd; /* file pointer ¥/
char *fs; /* pointer to format string */

- 118 -



Chapter 10 Input and Qutput

Description:

The fprintf function writes argl through argn to the file pointed to by
fp. The fs argument points to the format string that tells fprintf the data
type of each of the other arguments passed to it. The format string must
contain a format conversion specification for each of the arguments, argl
through argn. Any other text in the format string is simply written to fp.

Returns:

status = 0 1f successful
EOF if unsuccessful

Example:

main()

{
char c = 'a';
short s = 127;
int i = 32767;
unsigned u = 65535;
long 1 = 100000;
float f = 1.23456;
double d = 1.23456789;
char string[] = "TheEnd.";

fprintf(stdout, "Output Using Fprintf:\n\n'");
fprintf(stdout, "%c¢ %d %d %u %1 %f %Zf %s",
¢, s, i, u, 1, £, d, string);

10.4.7 sscanf

Format:

status = sscanf(s, fs, argl, arg2, ... argn);

int status; /* return status */
char *g; /* pointer to input string */
char *fs; /* pointer to format string */

- 119 -



Input and Output Chapter 10

Description:

The sscanf function reads values from the string pointed to by s and
assigns them to the arguments, argl through argn. The fs argument points to
the format string that tells sscanf the data type of each of the other
arguments passed to it. Argl through argn must be variable addresses since
sscanf stores the values read in the memory locations pointed to by argl
through argn. The format string must contain a format conversion
specification for each of the arguments, argl through argn. Any other text in
the format string simply causes matching text in the input string to be
skipped.

Returns:

status = number of values assigned if successful
number of values assigned if error

Example:

main()

{
char c;
short -
int i
unsigned u;
long 1;
float f;
double d;
char string[81];
char s[] =

"a 127 32767 65535 100000 1.23456 1.23456789 TheEnd";
printf("Input Using Sscanf:\n\n");

sscanf(s, "%Zc, %Zh, %d, %u, %1d, %f, %1f, %s",
&c, &s, &i, &u, &1, &f, &d, string);

- 120 -



Chapter 10 Input and Output

10.4.8 sprintf

Format:

status = sprintf(s, fs, argl, arg2, ... argn);

int status; /* return status */

char *g; /* pointer to output string */

char *fs; /* pointer to format string */
Description:

The sprintf function writes argl through argn to the string pointed to by
s. The fs argument points to the format string that tells fprintf the data
type of each of the other arguments passed to it. The format string must
contain a format conversion specification for each of the arguments, argl
through argn. Any other text in the format string is simply written to s.

Returns:

status = 0 if successful
EOF if unsuccessful

Example:

main()

{
char c = 'a';
short s = 127;
int i = 32767;
unsigned u = 65535;
long 1 = 100000;
float f = 1.23456;
double d = 1.23456789012345;
char string[] = "The End.";
char s[81];
printf("Output Using Sprintf:\n\n');
sprintf(s, "%c %d %d %u %1 Zf %f %s\0",

¢, s, i, u, 1, £, d, string);

printf("%s", s);

)

- 121 -






Chapter 11

Standard Functions

11.1 Character Functions

A set of standard functions are used to determine the type of a character.
A character may be alphabetic, digit, whitespace, lower case, or upper case.
Two functions convert case. One converts upper case to lower case while the
other converts lower case Lo upper case.

11.1.1 isalpha

Format:

result = isalpha(c);

int result; /* true or false result */
int c; /* character */
Description:

The isalpha function compares the argument ¢ with the alphabetic characters
'A' through 'Z' and 'a' through 'z'. The argument ¢ may also be of type char
since it is automatically converted to int.

Returns:

result = non-zero (true) if ¢ is alphabetic
zero (false) if ¢ is not alphabetic

- 123 -



Standard Functions Chapter 11

Example:

#include "'stdio"
main()
{
int ¢
for (c=0; c<128; c++)
if (isalpha(c)) putchar(c);

11.1.2 isdigit

Format:

result = isdigit(e);

int result; /% true or false result */
int c; /* character */
Description:

The isdigit function compares the argument ¢ with the digit characters '0'
through '9'. The argument c may also be of type char since it is automatically
converted to int.

Returns:
result = non-zero (true) 1if c is digit
zero (false) if ¢ is not digit
Example:

#include "stdio"
main()
{
int ¢
for (c=0; ¢<128; c++)
if (isdigit(c)) putchar(e);

- 124 -



Chapter 11 Standard Functions

11.1.3 isspace

Format:

result = isspace(c);

int result; /* true or false result */
int c; /* character */
Description:

The isspace function compares the argument c¢ with the whitespace characters
' ' (blank), '\t' (tab), and '\n' (newline). The argument ¢ may also be of
type char since it is automatically converted to int.

Returns:
result = non-zero (true) if ¢ is whitespace
zZero (false) if c¢ is not whitespace
Example:

#include "stdio"
main()
{
int c;
for (c=0; ¢c<128; c++)
if (isspace(c)) putchar(c);

11.1.4 islower

Format:
result = islower(ec);

int result; /* true or false result */
int c; /* character */

- 125 -



Standard Functions Chapter 11

Description:

The islower function compares the argument ¢ with the lower case alphabetic
characters 'a' through 'z'. The argument c may also be of type char since it

is automatically converted to int.

Returns:
result = non~zero (true) if ¢ is lower case
zero (false) if ¢ is not lower case
Example:

#include "stdio"
main()

{
int c;
for (c=0; c<128; c++)
if (islower(c)) putchar(c);

11.1.5 isupper

Format:

result = isupper(c);

int result; /* true or false result */
int c; /* character */
Description:

The isupper function compares the argument ¢ with the upper case alphabetic

characters 'A' through 'Z'. The argument ¢ may also of type char since it is
automatically converted to int.

Returns:

result = mnon-zero (true) if ¢ is upper case
zero (false) if ¢ is not upper case

- 126 -



Chapter 11 Standard Functions

Example:

#include "stdio"
main()

{
int ¢;
for (e=0; c<128; c++)
if (isupper(c)) putchar(c);

11.1.6 tolower

Format:

result = tolower(c);

int result; /* converted character */
int c; /%* character */
Description:

The tolower function compares the argument ¢ with the alphabetic characters
'A' through 'Z'. If ¢ is an upper case alphabetic character, the function
returns the lower case equivalent. Otherwise the function returns c
unchanged. The argument ¢ may also be of type char since it is automatically

converted to int.

Returns:
result = lower case equivalent if ¢ is upper case
¢ if ¢ is not upper case
Example:

#include '"'stdio"
main()
{
int c¢;
for (c=0; c<128; c++)
if (isalpha(c)) putchar(tolower(c));

- 127 -



Chapter 11

Standard Functions

11.1.7 toupper

Format:

result = toupper(c);

int result; /% converted character */
int c; /* character */
Description:

The toupper function compares the argument c¢ with the alphabetic characters
a' through 'z'. If ¢ is a lower case alphabetic character, then the function
returns the upper case equivalent. Otherwise the function returns c
unchanged. The argument c may also be of type char since it is automatically
converted to int.

Returns:
result = wupper case equivalent if ¢ is lower case
¢ if ¢ is not lower case
Example:

#include '"stdio"
main()
{
int ¢
for (c=0; ¢<128; c++)
if (isalpha(c)) putchar(toupper(c));

11.2 String Functions

There are several standard functions that operate on strings. A string is
defined as a sequence of characters terminated by the NULL character ('\0').

~ 128 -



Chapter 11

11.2.1 strlen

Format:

length = strlen(s);

int length; /* length of the string */
char *g; /* pointer to the string */
Description:

Standard Functions

The strlen function determines the length (in bytes) of a string of
characters. The argument s is a pointer to the beginning of the string. The
string must be terminated by the NULL character ('\0'). The NULL character is

not counted in determining the length.

Returns:

length = number of characters (bytes) in the string

Example:

main()

{
int length;
char s[] = "0123456789";

length = strlen(s);

printf("length of \"0123456789\" is %d", length);

11.2.2 strcpy

Format:

strcpy(dest, source);

char *dest; /* pointer to the destination string */

char *source; /% pointer to the source string

- 129 -

*/



Standard Functions Chapter 11

Description:
The strcpy function copies the string pointed to by the source argument to
the string pointed to by the dest argument. The copying stops when the NULL

character is encountered in the source string. The NULL character is then
appended to the destination string.

Returns:
none
Example:
main()
{
char dest[81];
char sourcel] = "0123456789":
strcpy(dest, source);

puts(source);
puts(dest):

11.2.3 stremp

Format:

result = stremp(sl, s2);

char *sl; /* pointer to the first string */
char *g2; /* pointer to the second string */
Description:

The strcmp function compares two strings. The string argument sl is
compared with the string argument s2. Starting with the first character in
each string, the characters of the two strings are sequentially compared until
a character in the first string does not match a character in the second. The
value returned by the function is then calculated by subtracting the two
non-matching characters. The character in s2 is subtracted from the character
in sl. If sl is identical to s2, then the value returned by the function is
o.

Returns:
result = negative if sl < g2
0 if sl = g2
positive if sl > 82

- 130 -



Chapter 11 Standard Functions

Example:
main()
{
char s1[81];
char s2[81];
puts("¥%% String Compare *¥*");
printf("Enter the first string : ");
scanf("%s", sl1);
printf("Enter the second string : ");
scanf("%s", s2);
if (strcmp(sl,s2) < 0)
printf("%s < %s", sl, s2);
else if (strcmp(sl,s2) > 0)
printf(''%s > Zs", sl, s2);
else
printf("%s = %s'", sl, s2);
b

11.2.4 strcat

Format:

strcat(sl, s2);

char *sl; /* pointer to the first string */
char #g2; /* pointer to the second string */
Description:

The strcat function concatenates two strings. The string argument s2 is
appended to the end of string argument sl. The size of the string sl must be
large enough to hold both sl and s2 with a NULL byte appended at the end.

Returns:

none

- 131 -



Standard Functions Chapter 11

Example:

main()

{
char s1[1201];

char s2[120];

puts("*** String Concatenate *%*'");
printf("Enter the first string : ");
scanf("%s", sl);

printf("Enter the second string : ");
scanf("%s", s2);

strcat(sl, s2);

printf("%s", sl);

11.2.5 strsave

Format:
ptr = strsave(s);

char *ptr; /* pointer to a copy of string s */
char *g /* pointer to string s */

Description:

The strsave function saves a copy of a string in the heap. The string
argument s is copied into the heap and the returned value is a pointer to
where the copy of string s is located.

Returns:

ptr = pointer to the copy of string s if successful
NULL if not enough space in the heap to store s

- 132 -



Chapter 11 Standard Functions

Example:

#include "stdio"
#define MAX 50
char *strings[MAX];
main()

{
char s[81];

int i = 0;
char *strsave();

while (scanf("%s", s) != EOF && i < MAX)
strings[i++] = strsave(s);

i =0;

while (strings[i] != NULL && i < MAX)
puts(strings[i++]);

11.3 Dynamic String Functions

A non-standard type of string is the dynamic string. A dynamic string has
a structure as defined by STRING in the standard header file. Dynamic strings
are stored in the heap. Two functions are provided for converting a normal
string to a dynamic string and vice versa. The System Implementation Manual
describes a library of string functions that operate only on dynamic strings.

11.3.1 stods

Format:
ds = stods(s);

STRING *ds; /* pointer to the dynamic string */
char *s; /* pointer to the normal string */

Description:

The stods function converts a normal string to a dynamic string. The
normal string argument s is converted to a dynamic string. The function
returns a pointer to the dynamic string. Dynamic strings are required by the
library of string functions described in the System Implementation Manual. The
scanf and printf functions have been extended to read and write dynamic
strings using the conversion specification Zy.

- 133 -



Standard Functions Chapter 11

Returns:

ds = pointer to the dynamic string if successful
NULL if not enough space in heap for the dynamic string

Example:
#include "stdio"
main()

{

char  s[] = "abcdefghijklmnopqrstuvwxyz';
STRING *ds;
STRING *stods();

ds = stods(s);
printf("dynamic string = %y\n", ds);

11.3.2 dstos

Format:
dstos(ds, s);

STRING *ds; /* pointer to the dynamic string */
char *s; /* pointer to the normal string */

Description:

The dstos function converts the dynamic string pointed to by the argument
ds to a normal string. The string is stored at the location pointed to by the
argument s.

Returns:

none

- 134 -



Chapter 11 Standard Functions

Example:

#include "stdio"
main()

{
char s[81];
STRING *ds;

printf("Enter a string: ");
scanf("%Zy", ds);,

dstos(ds, s);

printf("%s", s);

11.4 Conversion Functions

There are two functions that counvert a string to a number. One function
converts an integer string to an int. The integer string is a string of digit
characters representing a valid integer number. The other function converts a
floating point string to a double. The floating point string is a string of
characters representing a valid floating point number (See Floating Point
Constants in Chapter 1).

There are also two functions that convert a number to a string. One

function converts an int to a string of digit characters. The other converts
a double to a string of characters representing the floating point value,

11.4.1 atoi

Format:

i = atoi(s);

int i; /* binary value of integer string */
char *s; /% pointer to the integer string */
Description:

The atoi function converts a string to its integer equivalent. The
argument s is a pointer to the string of digits which must represent a value
in the range of an int. The function converts the string to a binary integer
value.

- 135 -



Standard Functions Chapter 11

Returns:
= binary value of the integer string s
Example:
main()
{
char s[] = "12345";
int i
i = atoi(s);
printf("%d", 1i);
>

11.4.2 atof

Format:
f = atof(s);
double f; /* binary value of floating point string */
char *s; /* pointer to the floating point string */
Description:

The atof function converts a string to its floating point equivalent. The
argument s is a pointer to the floating point string which must represent a
value in the range of a double. The function converts the string to a binary
floating point value.

Returns:

f = binary value of the floating point string s
Example:

main()

{
char s[] = "1.2345e2";
double f;
double atof();

f = atof(s);
printf("%£", f);

- 136 -



Chapter 11

11.4.3 itoa

Format:

itoa(i, s);

Standard Functions

int i; /* binary value of integer */
char *g; /* pointer to the integer string */
Description:

The itoa function converts a binary integer value to its string
equivalent. The argument i is the binary integer value and the argument s is
a pointer to the location where the digit string is stored.

i, s);

Returns:
none
Example:
main()
{
char s[10];
int i = 236;
itoa(i, s);
printf("%d %Zs",
)

11.4.4 ftoa

Format:

ftoa(f, s, flag, left, right);

double £; /*
char *g; /%
unsigned flag; /*
unsigned left; /*
unsigned right; /%

binary value of double */

pointer to the floating point string */
format flag */

number of digits left of decimal */
number of digits right of decimal */

- 137 -



Standard Functions Chapter 11

Description:

The ftoa function is a non-standard function that converts a binary
floating point value to an equivalent string of characters. The argument f is
a binary floating point value. The argument s is a pointer to where the
string equivalent is stored. The argument flag specifies the format of the
string conversion. The argument left specifies the number of characters to
the left of the decimal point, while the argument right specifies the number
of characters to the right of the decimal point. The buffer pointed to by
argument s should be larger than is necessary to store the converted floating
point value. The size required is effected by the value of the floating point
number and the three arguments: flag, left, and right. To be safe, you should
make the buffer size 80. The ftoa function is guaranteed not to use more than
80 characters under any conditions.

The value of the flag argument may simply be 0. Then the floating point
number is converted in fixed point format. The left and right arguments
define the number of characters to the left and right of the decimal point.
If the argument left is larger than needed, blanks will precede the number,
If the argument right is larger than is needed, 0's will follow the number.

The flag argument provides considerable control over the format of the
converted number. The flag contains 8 bits that may be turned on or off to
control the format of the conversion. Constants can be defined to represent
each of the 8 bits. Then the | (bitwise or) operator may be used to turn on
the bits desired. The following chart defines the function of each of the 8
bits in the format flag. A function is turned off if its bit is clear (0) and
on if its bit is set (1).

Bit Function Example
0 exponential format 1.23e+01 instead of 12.3
1 no trailing O's 1.23 instead of 1.2300
2 sign follows 1.23~ instead of ~1.23
3 include sign +1.23 instead of 1.23
4 leading $ sign $1.23 instead of 1.23
5 leading * sign **]1,23 instead of 1.23
6 include commas 1,234.56 instead of 1234.56
7 change leading + to blank 1.23 instead of +1.23
Returns:
none

- 138 -



Chapter 11

Example:

#define
#define
#define
#define
#define
#define
#define
#define

main()

{

char

BITO
BIT1
BIT2
BIT3
BIT4
BITS
BIT6
BIT7

double
unsigned
unsigned

1 /*
2 /*
4 /*
8 /*
16 /*
32 /%

64 /%
128 /*

s[80];

exponential format
no trailing 0's
sign follows
include sign
leading $ sign
leading * sign
include commas

*/
*/
*/
*/
*/
*/
*/

change leading + to blank */

f = -1234.567890;

[

flag
left

i

BIT2 | BIT4 |
10, right = 2;

BIT6;

ftoa(f, s, flag, left, right);
puts(s);

11,5 Dynamic Memory Functions

Standard Functions

A section of memory called the heap is available for a program to use as

needed for storing variables.
through two standard functions, calloc and cfree.
allocates memory.

11.5.1 calloc

Format:

ptr = calloc(number, size);

char *ptr;

unsigned size;

/* ptr to allocated block of memory */

unsigned number; /* number of units to allocate */
/* size of a unit in bytes */

- 139 -

The program controls the use of the heap

The calloc function
The cfree function frees memory for other use.



Standard Functions Chapter 11

Description:

The calloc function allocates (reserves) a block of memory. The size of
the block (in bytes) is determined by multiplying the number argument (number
of units) by the size argument (size of a unit). The calloc function then
allocates a block of this size and returns a pointer to the beginning of the

block.

Notes: The sizeof coperator is useful in determining the size
of a type or variable. The memory allocated by calloc
will be cleared (set to zero) if the /*$ZERO%*/ compiler

option 1s used.

Returns:

ptr = pointer to the allocated block if successful
NULL (not enough space in heap) if unsuccessful

Example:

struct name {
char first[15];
char middlel[l15];
char last[15];

s
main()
{
int status;
struct name *name;
char *calloc();
name = calloc(l, sizeof(struct name));
if (pname != NULL) {
printf("Enter Name (first middle last): ");
scanf("%s%s%s",
name~->first, name->middle, name->last);
printf("Zs%s%s",
name->first, name->middle, name->last):
)
else printf("<< Qut of space in the heap >>");
)

- 140 -



Chapter 11 Standard Functions

11.5.2 cfree

Format:
cfree(ptr);

char *ptr; /* pointer to allocated block of memory */

Description:

The cfree function frees (releases) a block of memory that was previously
allocated by calloc. The ptr argument is a pointer to the beginning of the
block of memory. The entire block of memory to which ptr points is released
for other use.

Returns:
none
Example:
struct name {
char first[15];

char middle[l5];
char 1last{15];

33
main()
{
int status;

struct name *name;
char  *calloc();
name = calloc(l, sizeof(struct _name));
if (name != NULL) {
printf("Enter Name (first middle last): ");
scanf("%s%s%s",
name->first, name->middle, name->last);
printf("%s Zs 7%s",
name->first, name->middle, name->last);
cfree(name);

b
else printf("<< Out of space in the heap >>");

- 141 -



Standard Functions Chapter 11

11.6 Math Functions

The math functions provide the ability to perform scientific calculations.
These functions must be declared because they all return double values. All
arguments are double values and must be expressed in radians. Degrees may be
converted to radians by multiplying by 3.141592654/180.

11.6.1 abs

Format:
fl = abs(f2);

double fl; /* absolute value of f2 */
double f2; /* floating point value */

Description:
The abs function returns the absolute value of the floating point argument
f2.
Returns:
fl = absolute value of f2
Example:
main()
{
double f = -1.0;
double abs();

printf("abs(Zf) = %Zf", f, abs(f));

11.6.2 atan

Format:
fl = atan(f2);

double fl; /% arctangent of £2 */
double f2; /* floating point value */

- 142 -



Chapter 11

Description:

Standard Functions

The atan function returns the arctangent of the floating point argument

£2.
Returns:
fl = absolute value of £2
Example:
main()
{
double f = 1.0;
double atan();
printf("atan(%f) = %f'", f, atan(f));
>
11.6.3 cos
Format:

fl = cos(f2);

double fl; /* cosine of f2 */
double f2; /* floating point value */

Description:

The cos function returns the cosine of the floating point argument f2.

Returns:

fl = cosine of f2

Example:

#define PI 3.141592654
main()

{
double f = PI;
double cos();

printf("cos(%f) = Zf", £, cos(f));

- 143 -



Standard Functions

11.6.4 exp
Format:
fl = exp(f2);

double fl; /* natural exponential of f2 */

double f2; /% floating point value */

Description:

Chapter 11

The exp function returns the natural exponential of the argument f£2. The
exp function uses base e (2.718281828) and raises this value to the £2 power.

Returns:

fl = natural exponential of f2
Example:
main()

{
double f = 1.0;

double exp();

printf(Mexp(Z£f) = %f", £, exp(f));

y
11.6.5 log
Format:

fl = log(f2);

double fl; /* natural logarithm of f2 */
double f2; /* floating point value */

Description:

The log function returns the natural logarithm of the argument f£2. The log

function uses base e (2.718281828) in taking the logarithm of f2.

positive values are allowed for argument f£2.

Returns:

fl = natural logarithm of f£2

- l44 -

Only



Chapter 11 Standard Functions

Example:
main()
{
double f = 2.718281828;
double 1log();
printf("log(%£f) = Zf", £, log(£));
b
11.6.6 sin
Format:

f1 = sin(f2);

double fl; /* sine of f£2 %/
double f2; /* floating point value */

Description:

The sin function returns the sine of the floating point argument £2.

Returns:
fl1 = sine of f2
Example:

#define PI 3.141592654
main()
{
double f = PI/2;
double sin();

printf("sin(%£) = %Zf", £, sin(£f));

11.6.7 sqr

Format:
fl = sqr(£f2);

double f1; /* square of f2 */
double f£2; /* floating point value */

- 145 -



Standard Functions

Description:

Chapter 11

The sqr function returns the square of the argument f2. The sqr function

simply returns £2 * f2,

Returns:
fl = square of f2
Example:
main()
{
double f = 2.0;
double sqr();

printf("sqr(Z£) = Zf", £, sqr(f));

11.6.8 sqrt

Format:
fl = sqrt(£2);

double fl; /% square root of f2 */
double f2; /¥ floating point value */

Description:
The sqrt function returns the square root of the argument f2.
greater than or equal to 0 are allowed for argument f2,.
Returns:
fl = square root of f2
Example:
main()
{
double f = 4.0;
double sqrt();

printf("sqrt(Z£f) = Zf", £, sqrt(f));

- 146 -

Ounly values



Chapter 11 Standard Functions

11.7 Termination Functions

There are two standard functions that will terminate a program when
called. The exit function terminates a program after closing all open files.
The _exit function terminates a program without closing files.

11.7.1 exit

Format:

exit(status);

int status; /* termination status */
Description:

The exit function closes all open files and then terminates the program.
If the status argument is 0, the program is terminated normally. If status is
~1, the program is aborted. A program that is aborted will terminate an
executing batch stream while a normal program termination will not. The
status argument may not have any effect at all under some operating systems.

Returns:
None
Example:

main()

{
FILE *fp;
fp = fopen("test", "w');
fputs("This is a test'", fp);
exit(0);
fputs(""This is not printed', fp);

- 147 -



Standard Functions Chapter 11

11.7.2 _exit

Format:
_exit(status);

int status; /* termination status %/

Description:

The _exit function terminates the program without closing any files. The
contents of any output files that are open when _exit is called may be lost.
The status argument performs the same action as described for the exit
function.

Returns:
None
Example:

main()

{
FILE *fp;
fp = fopen{("test", "w");
fputs("This is a test", fp);
_exit(0);
fputs("This is not printed", fp);

~ 148 -



Chapter 12

Compiler Controls

12.1 Preprocessor Statements

Statements beginning with the # sign are known as preprocessor statements.
The term preprocessor is used for historical reasons. Most C compilers make a
separate pass through a C program to process just the statements beginning
with the # sign, creating an intermediate file that is then compiled. The #
sign is usually required to begin in the first column. This compiler however
makes only a single pass through the source program and the # sign may begin
in any column. The following sections explain the preprocessor statements.

12.1.1 #include

Format:
#include "file name"
where file name is the name of a disk file

Description:

The #include statement is used to include another C source file during a
compile. When the compiler encounters a #include statement, it compiles the C
source in the named file before continuing. It has the same effect as
inserting the source in the file at the location of the #include statement.
The file name used with #include must be enclosed by either double quotes "'
or angle brackets <>. On some systems, the angle brackets may cause the file
to be searched for on a specific disk drive.

- 149 -



Compiler Controls Chapter 12

Example:

#include "stdio"
#include "globals"
main{()
{
#include ''locals"
#include "body"
)

12.1.2 #define

Format:

#define MACRO_NAME macro_definition

where MACRO NAME is an identifier
and macro_definition is a text string

Description:

The #define statement is used to define a macro. A macro is an identifier
and the text that the compiler substitutes when the identifier is later
encountered in the program. The identifier corresponds to the name of the
macro while the text corresponds to the actual definition of the macro.

The main use of macros is to define program constants. However, a macro
can also have arguments. This allows macros to be used as shorthand notations
for complex expressions that are used in many different places in a program.
An argument list may follow the identifier to provide a means of passing
information to the macro definition. The macro definition text would then
contain the arguments as part of the text string. The macro is used much like
a function call. The identifier is followed by an argument list and the
compiler makes the appropriate substitution. The arguments passed to a macro
are passed as text.

Example:

#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#define MIN(a,b) (((a) < (b)) ? (a) : (b))

main()
{
float £f1, f£2;
printf("Enter 2 numbers: ");
scanf("Z£%£", &fl, &f£2);
printf("The largest number is %f\n", MAX(fl,f2));
printf("The smallest number is %f\n", MIN(f1,£2));

- 150 -



Chapter 12 Compiler Controls

12.1.3 #undef

Format:
#undef MACRO_NAME

where MACRO NAME is an identifier

Description:

The ffundef statement is used to undefine a macro. An undefined macro is no
longer known to the compiler. The #undef statement can be used to free the
space used by a macro definition that is no longer needed.

Example:

#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#define MIN(a,b) (((a) < (b)) ? (a) : (b))

main()
{
float f1, £2;
printf("Enter 2 numbers: ");
scanf("Z£7£f", &fl, &f£f2);
printf("The largest number is %Zf\n", MAX(f1,£2));
printf('"The smallest number is %f\n", MIN(fl,£2));
#undef MAX
#undef MIN

12.1.4 #ifdef

Format:

#ifdef MACRO_NAME
statements
#endif

- 151 ~



Compiler Controls Chapter 12

Description:

The #ifdef statement is used to conditionally compile selected statements
of a program only if the named macro is defined. The conditionally compiled
statements are preceded by the #ifdef and followed by a #endif. The program
lines in between are then compiled only if the specified macro is defined.
The compiler listing will show a - sign preceding a line that is not
compiled.

Example:

#include "stdio"
#define DEBUG

writeline(s, fp)
char *s;
FILE *fp;
{
fputs(s, fp);
putc('\n', fp);
#ifdef DEBUG
puts(s); /* output to screen */
#endif

12.1.5 #ifndef

Format:

#ifndef MACRO_NAME
statements
#endif

Description:

The #ifndef statement is used to conditionally compile selected statements
of a program only if the named macro is not defined. The conditionally
compiled statements are preceded by the #ifndef and followed by a #endif. The
program lines in between are then compiled only if the specified macro is not
defined. The compiler listing will show a - sign preceding a line that is not
compiled.

- 152 -



Chapter 12 Compiler Controls

Example:

#include "stdio"
#include "constant"

#ifndef MAXBUF
#define MAXBUF 81
#endif

main()

{
char s[MAXBUF];

while (gets(s) != NULL) puts(s);

12.1.6 #if

Format:

#if constant-expression
statements
ffendif

Description:

The #if statement is used to conditionally compile selected statements of a
program only if the constant-expression is non-zero (true). The conditionally
compiled statements are preceded by the #if and followed by a #endif. The
program lines in between are then compiled only if the expression does not
evaluate to 0 (false). The compiler listing will show a - sign preceding a
line that is not compiled.

- 153 -



Compiler Controls Chapter 12

Example:

#define DOLLAR 1
#define COMMA 1

main()

{
int flag;
char s[20];
#if DOLLAR && COMMA
flag = 80;
#endif
#if DOLLAR && !COMMA
flag = 16;
#endif
#if !DOLLAR && COMMA
flag = 64;
#endif
#if !DOLLAR && !COMMA
flag = 0;
f#endif
ftoa(1000.0, s, flag, 8, 2);
puts(s);

12.1.7 #else

Format:

#else
statements

Description:
The ffelse statement may be used with the #ifdef, #ifndef, or #if
statements. The #else and its accompanying statements should be placed just

prior to the #endif. The #else statements are compiled only if the preceding
statements (of the #ifdef, #ifndef, or #if) are not compiled.

- 154 -



Chapter 12 Compiler Controls

Example:

#define MOD1 O
#define MOD3 0

#if MOD1 || MOD3

#define SCREEN WIDTH 64
#define SCREEN HEIGHT 16
#else

#define SCREEN WIDTH 80
#define SCREEN HEIGHT 24
#endif -

main()

{
printf("width = Zd\n'", SCREEN WIDTH);
printf(height = %d", SCREEN_HEIGHT);

12.1.8 #line

Format:
#line constant

Description:

The compiler numbers lines sequentially starting at 1 when creating a
program listing. The #line statement may be used to set the line number of
the next line of the compiler listing. The compiler will then number
subsequent lines of the listing beginning with the specified line number.

Example:

#include "stdio"
#line 1
main()

{

/* main starts at line 1 */

>

- 155 -



Compiler Controls Chapter 12

12.2 Compiler Options

Compiler options are switches that control various characteristics of the
compiler. A compiler option is specified using a comment. The format is as
follows.

/*$COMPILER_OPTION*/ or /#$NO COMPILER OPTION*/

All compiler options must be specified in upper case and there must be no
spaces between the /* and the $ sign.

A compiler option may be turned on or off. The option is turned on unless
preceded by NO, in which case it is turned off. Except where noted, compiler
options may appear anywhere in a program. They may be turned on or off as
needed., For each option, there is a default setting. If the default setting
is the one desired, then the option need not be specified.

12.2.1 CONVERT Option

Format:
/*SCONVERT*/ or /*$NO CONVERT*/
Default: /*$CONVERT*/

Description:

The convert option may be used to prevent automatic type conversion on the
arguments in a function call. Normally, arguments are converted according to
C's defined conversion rules for expressions. For example, char is
automatically converted to int and float is automatically converted to
double. Therefore, it is normally not possible to call a functionm that has
char or float arguments because it is not possible to pass a char or float
value. When the convert option is turned off, the compiler does not generate
code to perform type conversions on function arguments. Then any type of
value may be passed to a function.

- 156 -



Chapter 12 Compiler Controls

Example:

printvalue(c, f)

char o

float £;

{

printf("%c %Zf", c, £);

>

main()

{
char ¢ = 'a';
float £ = 1.0;
/*$NO CONVERT*/
printvalue(c, f);
/*SCONVERT*/

>

12.2.2 LIST Option

Format:
/*$LIST*/ or /*$NO LIST*/
Default: /*SLIST*/
Description:

The list option may be used to turn the compiler listing on and off.

Example:

/*$NO LIST*/
#include "stdio"
/*SLIST*/

main()

{

puts("Do not show listing of stdio);

>

- 157 -



Compiler Controls Chapter 12

12.2.3 LISTMACRO Option

Format:
/*$LISTMACRO*/ or /*$NO LISTMACRO*/
Default: /*$NO LISTMACRO*/

Description:

The listmacro option may be used to cause the compiler to generate the
expansions of macros on the compiler listing. When this option is on, all
lines that contain a macro will be followed by the expansion of the line.
Example:

/*SLISTMACRO%*/

#include ''stdio"

main()
{
int ¢;
while ((c=getchar()) != EQF)
putchar(c);
>

12.2.4 NESTCMNT Option

Format:
/*$NESTCMNT*/ or /*$NO NESTCMNT*/
Default: /*$NO NESTCMNT*/
Description:

The nestcmnt option may be used to allow comments to be nested.

Example:

/*$NESTCMNT* /
/* /* This is a comment */ within a comment */

- 158 -



Chapter 12 Compiler Controls

12.2.5 PAGESIZE Option

Format:

/*$PAGESIZE n¥*/

Default: /*$PAGESIZE 60%/
Description:

The pagesize option may be used to set the number of program lines that are
printed on each page of the compiler listing.

Example:
/*$PAGESIZE 10%/
#include "stdio"
main()

{
/* There should be 10 program lines per page */

>

12.2.6 SIGNEXT Option

Format:
/*S$SIGNEXT*/ or /*$NO SIGNEXT*/

Default: /*$NO SIGNEXT*/

Description:

The signext option may be used to cause characters to be sign extended when
converted to integers in expressions. This may be useful when using variables
of type char for numeric calculations. Sign extension means that if the char
value is negative, then the conversion to int will also be negative. Without
sign extension, conversion of char to int will always produce a positive
result.

- 159 -



Compiler Controls Chapter 12

Example:
main()
{
char ¢ = -1;
printf(""without sign extend: Zd\n", c¢);
/*$SIGNEXT*/

printf("with sign extend: %d'", c¢);

12.2.7 UPPERCASE Option

Format:
/*$UPPERCASE*/ or /#$NO UPPERCASE*/
Default: /*$UPPERCASE*/
Description:

The uppercase option controls the case of function names in the object
code. When the option is on, the compiler converts all function names to
upper case in the object code. When the option is off, the compiler outputs
the function names in the same case as they appear in the program. The main
function should be output in upper case letters since the C library references
it in upper case. This can be changed by recompiling the C library with the
uppercase option turned off.

Example:
/*$NO UPPERCASE*/
function()
{
}
/*$UPPERCASE*/
main()

{
>

-~ 160 -



Chapter 12 Compiler Controls

12.2.8 WIDELIST Option

Format:
/*$WIDELIST*/ or /*$NO WIDELIST*/
Default: /*$NO WIDELIST*/
Description:

The widelist option may be used to cause the addresses of the generated
code to be printed on the compiler listing. All addresses are relative to the
beginning of a function. This can be useful as a debugging aid when used in
conjunction with the linkload utility. When a program terminates with a
runtime error, the address of the last instruction executed is displayed on
the screen. By using the symbols command of the linkload utility, the
starting address of each function may be found. Separately compiled files
must be loaded in the same order as they were when executing the program for
this to be effective. By comparing the terminating address with the starting
address of each function, the function that was executing when the termination
occurred may be determined. Subtracting the starting address of this function
from the terminating address gives the address relative to the beginning of
the function. This can be compared to the compiler listing to determine the
approximate line in the function where the error ocurred.

Example:

/*S$WIDELIST*/
one()
{
int a = 1;
return a;

3
main()
{
printf('"One = %Zd ', one());
b

- 161 -



Compiler Controls Chapter 12

12.2.9 ZERO Option

Format:
/*8ZERO*/ or /#*8NO ZERO*/
Default: /#*$NO ZERO*/

Description:

The zero option sets a runtime flag that effects two things. When the zero
option is on, all local variables in a function are initialized to 0 when the
function is called. Also, the memory allocated by the standard calloc

function is intialized to 0. The zero option only has an effect when the main
function is compiled.

Example:

/*$ZERO* /
main()
{
char *calloc(), *ptr;
int  i;
ptr = calloc(l, 30);
for (i=0; i<30; i++) printf("%d", *ptr++);

- 162 -



A.l

Appendix A

Error Messages

Compiler Error Messages

W oo ~NOY U PN

12
14
15
16
17
18
19
20
22
24
25
26
27
31
33
36
37
38
50
67
68
69
70
71
72
73
74
75
76
77

Identifier expected

Identifier expected in a type declaration
') expected

':' expected

Illegal symbol

Invalid preprocessor statement

Unexpected end of file during declaration definition

Right braces expected

Right bracket ']' or '.)' expected
':' expected

Integer expected

'=! expected

Statement expected

Closing single quote expected
Invalid character constant
', expected

Expression or ';' expected
Expression expected

Left parenthesis expected

WHILE keyword expected

Lvalue expected (invalid expression on left hand side of assignment)
Left braces expected or semi-colon missing on function declaration
Exponential part of floating point number expected

Lvalue expected for & and * unary operators
'{' not allowed, contents skipped

Matching '}' to error 37, text between has been skipped

Constant expected

Name of typedef expected

Structure contains a reference to itself
Bitfield too wide

Bitfields must be int or unsigned
Invalid reference to bitfield

Too many parameters in macro invocation
#ENDIF without a matching #IF

Unexpected eof with unclosed #IF statment
Preprocessor command expected

Missing parameter in macro invocation
Error opening #include file

- 163 -



79 End of file within a comment (missing */)
80 Open comment within a comment
81 Unknown option
101 Identifier already defined
104 Undeclared identifier
114 Null array size allowed for first dimension only
119 Static function definition must precede use
121 Pointer to a function expected
122 ';' not allowed before '{' in function definition
129 Type conflict of operands in an expression
130 Structure assignment with structures of different sizes
131 | or & do not apply to float or double operands
133 Pointer arithmetic requires int
134 Illegal type of operands
137 Incompatible pointers
138 Type of variable is not array
140 Type of variable is not structure or union
141 Type of variable is not pointer
143 Constant expression contains illegal operator
152 No such field in this structure
154 Function parameter list expected
158 Redefinition of a global variable
160 Function definition within a function illegal
162 Function definition has more than one variable in declaration list
164 Parameter declaration expected
165 Label already defined
167 This symbol is not a label
168 Label not defined
170 Too many items in initializer
171 Initializer contains list to initialize single item
172 Type not compatible in initializer
173 Initializer not allowed for this class
174 Initialization of bitfields not allowed on statics & globals
175 Can not be initialized by a string constant
176 & operator does not apply
177 Pointer required for & in initializers
183 Switch selector must be int, unsigned or char
187 Array subscript must be int
188 Invalid type in operands of an op= or = operator
189 Operand to & must be a variable
199 Feature not implemented
202 String constant cannot span lines
203 Integer constant too large
251 Too many errors

- 164 -



A.2 Runtime Error Messages

01) OUT OF STACK
cause: insufficient amount of stack available
cure : If compiling : specify more stack
CC <stack> file or
split program into more files
If executing
with RUNC : specify more stack space
RUNC file stack
with LINKLOAD : specify more stack space
at the stack prompt

02) OUT OF HEAP
cause: insufficient amount of heap available
cure : If compiling : specify less stack
CC <stack> file or
splilt program into more files
If executing
with RUNC : specify less stack space
RUNC file stack

with LINKLOAD : specify less stack space
at the stack prompt

03) BAD POINTER

cause: damaged object file or error inm program that
causes executing code to be overwritten with data

cure : If executing one of the supplied system files,
restore defective command file from the original
master disk.
If executing a user written program,
check all pointer usage and array indexing.
Check for a return of NULL when calling the
calloc function.

04) BAD LEVEL
see error 03

05) DIVIDE BY 0
cause: an integer or real divide operation with a divisor
of 0
cure : prevent divisor from becoming 0

06) UNDEFINED PCODE
see error 03

07) INVALID SET (Pascal Only)

cause: set operation results in set with more than 256
members

- 165 -



08) BAD RUNTIME CALL
see error 03

09) IO ERROR
cause: 1 - file does not exist

2 - disk is full

3 - bad disk or hardware

1 - specify correct file name

2 - clear some space on the disk

3

- run diagnostics

cure:

10) RANGE CHECK  (Pascal Only)
cause: indexing an array with a subscript out of range
cure : locate and fix indexing into the array

11) BAD DIGIT IN NUMBER
cause: attempt to read or DECODE an invalid number
cure : make sure all numbers read or decoded are legal
numbers

12) PUT ERROR  (Pascal Only)
cause: attempt to output an undefined file buffer variable
cure: assign a proper value to the file buffer variable

13) OVERFLOW
cause: a real arithmetic calculation overflows
cure : limit real numbers to the maximum size

15) UNDERFLOW
cause: a real divide operation causes underflow
cure : limit real numbers to the minimum non-zero size

16) LOG NEGATIVE
cause: attempt to take the natural log of a number <= 0
cure : log is valid for positive numbers only

17) SQRT, XY NEGATIVE
cause: attempt to take the square root of a negative number
or attempt to raise a negative number to a real
power
cure : square root is valid only for numbers >=0 and
only positive numbers may be raised to a real power

EB) ATTEMPT TO WRITE TO INPUT FILE
cause: passing an input file pointer to
an output function

EC) FILE NOT OPEN
cause: attempt to read or write an unopened file
cure : open the file using fopen

ED) ATTEMPT TO READ OUTPUT FILE
cause: passing an output file pointer to
an input function

- 166 -



EE) NO MEMORY FOR FILE BUFFER
cause: not enough space for file buffer in heap
cure : execute program using less stack

- 167 -






Decimal

[
OW OO NONU P WN O

WWWwWwWwWLWWWWNRNDINDNDNDNDDNNNDN b e e ped ol et o o o
WOOSNOOUVMESWNEF OWOOSNOU L WN M OWO0 SO D LR

Octal

000
001
002
003
004
005
006
007
010
011
012
013
0l4
015
016
017
020
021
022
023
024
025
026
027
630
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047

Appendix B

ASCII Table

Hex  Graphic Name

00 NUL (used for padding) <aull>

¥
=

01 ~A SOH (start of header)

02 ~B STX (start of text)

03 ~C ETX (end of text)

04 “D EOT (end of transmission)

05 “E ENQ (enquiry)

06 “F ACK (acknowledge)

07 “G BEL (bell or alarm)

08 “H BS (backspace) <bs>

09 1 HT (horizontal tab) <tab>
0A ~J LF (line feed) <1f>

0B “K VT (vertical tab)

0C “L FF (form feed, new page) <ff>
0D M CR (carriage return) <cr>

OE N SO (shift out)

OF ~0 SI (shift in)

10 “P DLE (data link escape)

11 ~Q DC1 (device control 1, XON)
12 “R DC2 (device control 2)

13 ~s DC3 (device control 3, XOFF)
14 T DC4 (device control 4)

15 ~U NAK (negative acknowledge)
16 v SYN (synchronous idle)

17 W ETB (end transmission block)
18 ~X CAN (cancel)

19 Y EM (end of medium)

1A ~Z SUB (substitute)

1B ~[ ESCAPE (alter mode, SEL) <esc>
1C “\ FS (file separator)

1D ~] GS (group separator)

1E -~ RS (record separator)

1F - US (unit separator)

20 " space or blank <sp>

21 ! exclamation mark

22 " double quote

23 # number sign (hash mark)

24 $ dollar sign

25 % percent sign

26 & ampersand sign

27 ! single quote (apostrophe)

169 -



40
41
42
43
44
45
46
47
48
49
50
51
52

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
676
077
1060
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136

28
29
2A
2B
2¢
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5¢C
5D
5E

+ N e

-

N ON NP WN RO e

>\-4/v—ﬂN'-<1><2€<CHWWOWOZZFNMH’IQ%FJUOU?;P@-QVII AN e

left parenthesis
right parenthesis
asterisk (star)
plus sign

comma

minus sign (dash)
period (decimal point)

(right)
numeral
numeral
numeral
numeral
numeral
numeral
numeral
numeral
numeral
numeral

slash
zZero
one
two
three
four
five
six
seven
eight
nine

colon
semi-colon

less—than sign

equal sign

greater—than sign
question mark

at sign

upper-case
upper-case
upper—case
upper-—case
upper-case
upper-case
upper-case
upper—case
upper-case
upper—-case
upper-case
upper—case
upper-case
upper-case
upper-case
upper-case
upper—-case
upper-case
upper-case
upper—~case
upper-case
upper—-case
upper-case
upper-case
upper-case
upper—-case

letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter

ABLE
BAKER
CHARLIE
DELTA
ECHO
FOXTROT
GOLF
HOTEL
INDIA
JERICHO
KAPPA
LIMA
MIKE
NOVEMBER
OSCAR
PAPPA
QUEBEC
ROMEOQ
SIERRA
TANGO
UNICORN
VICTOR
WHISKY
XRAY
YANKEE
ZEBRA

left square bracket
left slash (backslash)
right square bracket
uparrow (carat)

- 170 -



95

96

97

98

99
100
101
102
103
1064
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

S5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
78
7C
7D
7E
7F

r

e B TR T - T s T S~ B~ B o T~ = R SO R N I - AR e D e

{rubout>

underscore

(single) back quote

lower-case
lower—-case
lower—-case
lower-case
lower—case
lower~case
lower-case
lower—-case
lower—-case
lower-case
lower-case
lower~case
lower—-case
lower-case
lower-case
lower-case
lower~case
lower—-case
lower-case
lower-case
lower-case
lower—-case
lower—-case
lower—-case
lower~case
lower-case
left curly

letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
brace

vertical bar
right curly brace

tilde
DEL <del>

- 171 -

able
baker
charlie
delta
echo
foxtrot
golf
hotel
india
jericho
kappa
lima
mike
november
oscar
pappa
quebec
romeo
sierra
tango
unicorn
victor
whisky
Xray
yvankee
zebra






Appendix C

Differences from Kernighan and Ritchie

Extensions

(1) Structures may be assigned.

(2) Locally declared arrays and structures may be initialized.

(3) Nested comments are allowed via a compiler optiom.

(4) Char and float values may be passed to a function
via a compiler option that prevents automatic type
conversion of the arguments in a function call.

(5) Local variables may be initialized to 0 via a compiler
option.

Restrictions

(1) The address of (&) an array element may not be used as an
initializer.
(2) External float and double variables may not be initialized.

Other Differences

(n Reserved words may be lower case, upper case, or mixed case.
K & R says that reserved words must be lower case.

- 173 -






#define 150

f#else 154

#endif 151, 152, 153
#if 153

#ifdef 151

#ifndef 152

#include 149

#line 155

f#undef 151

_exit 148

_main function 97

abs 142

addition operator 35
address of, & 53
alternate symbols 7

and operator, logical 40
and, & 48

arguments 13

arithmetic operators 34
array initialization 75
array of characters 73
arrays 72

assignment operator 34
assignment operators 51
associativity 31

atan 142
atof 136
atoi 135

auto variables 24

bit fields 83

bitwise operators 46
Braces 9

break statement 92

calloc 139

cast operator 55

cfree 141

Character Constants 3
character functions 123
character I/0 100
character variables 19
closing files 97

comma operator 56
Comments 8

compiler options 156
conditional expression 58
conditional statements 87
Constants 2

contents of, * 53

Index

- 175 -



continue statement 93
conversion functions 135
CONVERT option 156

coes 143

decrement, -~ 43, 44
division operator 36
do-while statement 91
double precision 23
dstos 134

dynamic memory 139
dynamic strings 133

else statement 88
equality operator 39
equality operators 37
Escape Sequence 3
exclusive or, =~ 49

exit 147

exp l4s4

expression, ?: 58
extern variables 25
fclose function 99

fgets function 105

float type variables 22
Floating Point Constants 3
fopen function 98

for statement 92
formatted I/0 107
formatted input 108
formatted output 111
fprintf 118

fputs function 106
fscanf 117

ftoa 137

function arguments 63
function body 63
function call 67
function declarations 64
function definition 61
function names 62
function pointers 67
function types 62
functions 11, 61

getc function 101
getchar function 100
gets function 104

global variable declarations 64
global variables 16

goto statement 94
greater than operator 39
greater than or equal to operator
Identifiers 1

if statement 87
increment, ++ 43, 44
inequality operator 39
integer constants 2
integer variables 20

39

- 176 -



isalpha 123

isdigit 124

islower 125

isspace 125

isupper 126

itoa 137

labels 94

less than operator 39
less than or equal to operator 39
LIST option 157
LISTMACRO option 158
local variable declarations 63
local variables 15, 24
log 144

logical operators 40
long integers 21
looping statements 90
main function 11, 65
modulo operator 37
multiplication operator 36
negate, ~ 46

NESTCMNT option 158
nested blocks 65

not equal operator 39
not operator, logical 41
null statement 95
opening files 97
operator grouping 31
operator precedence 31
operator table 33
Operators 7

or operator, logical 41
or operator, | 50
PAGESIZE option 159
pointers 71

printf 116

putc function 102
putchar function 101
puts function 105
recursion 68

register variables 28
relational operators 37
Reserved Words 6

return statement 95
scanf 115

Semicolon 8

shift left, << 48

shift right operator 47
short integers 20
SIGNEXT option 159

sin 145

sizeof operator 54
sprintf 121

sqr 145

sqrt 146

sscanf 119

- 177 ~



statement labels 94
static functions 66
static variables 27
stderr 97

gstdin 97

stdout 97

stods 133

storage classes 24
strcat 131

stremp 130
strepy 129
string 73

String Constants 5

string functions 128

string I/0 104

strlen 129

strsave 132

structure arrays 82
structure bit fields &3
structure initialization 80

structure member operator 56, 80
structure pointer operator 57, 81

structure pointers 81
structure tags 77
structures 77
subtraction operator 35
switch 89

Symbolic Constants &
termination 147
Terminology 10

tolower 127

toupper 128
transcendental functions 141
type conversions 42
typedef 29

unary minus operator 36
ungetc function 103
unions 77, 84

unsigned integers 22
UPPERCASE option 160
void function type 62
while statement 90
WIDELIST option 161
ZERO option 162

- 178 -



Table of Contents

Chapter 1 Using the Optimizer

1.1 When to Use the Optimizer
1.2 How to Use the Optimizer

.

1.2.1 Short Form
1.2.2 Long Form

1.3 How the Optimizer Works

Chapter 2 Using the Code Generator

2.1 When to Use the Code Generator
2.2 How to Use the Code Generator
2.2.1 Short Form
2.2.2 Long Form

2.3 How the Code Generator Works
Chapter 3 Mixed Mode Operation

3.1 When to Use Mixed Mode
3.2 How to Use Mixed Mode

Chapter 4 Object Format

4.1 Address Independent

4.2 ASCII Format

4.3 Object Code Tags

4.4 Splitting Object Modules
Chapter 5 Assembly Language

5.1 Assembly Language Structure
5.2 Assembly Language Format

wn g S w W

~

o o]

11

11
12

13
13
13
14
15
17

17
18






Introduction

The advanced development package (ADP) is a software tool which adds a
great deal of power and versatility to the language system. The advanced
development package consists of two programs. One program is an optimizer
which reduces the size of programs. The other is a code generator which
increases the speed of programs. The combination gives the programmer the
ability to customize each application program, allowing for maximum
utilization of the systems capabilities.

The need for the optimizer occurs when writing large programs. All
programs require memory to store instructions and memory to store data. Large
programs require a lot of memory to store instructions. The memory used for
storing instructions subtracts from the memory available for storing data (ie.
the more memory used for storing instructions, the less available for storing
data). The optimizer's purpose is to reduce the amount of memory used by the
instructions in order to make more memory available for storing data.

The need for the code generator occurs when execution speed is important.
The compiler translates source programs to instructions known as pseudo code
(p-code for short). The computer cannot directly execute instructions in
p-code form. Instead they are executed by another program known as an
interpreter. Maximum execution speed can be achieved by translating programs
to machine code (the form which the computer hardware can understand and
execute directly without interpretation). The purpose of the code generator
is to translate p-code instructions to machine instructions. This provides a
method for achieving maximum execution speed.

The addition of the advanced development package provides the programmer
with a very flexible language system which offers a unique ability. This is
the ability to mix p-code with machine code. P-code has the advantage of
compactness while machine code has the advantage of speed. The ability to mix
the two makes it possible to customize application programs in order to
achieve optimum performance. The bottle neck areas of a program may be
translated to machine code for maximum speed while the rest of the program can
be left in p-code form. This allows programs to benefit from both compactness
and speed.






Chapter 1

Using the Optimizer

The optimizer is a program which takes the compiler generated p-code as
input and outputs an optimized form of the same p-code. The purpose of the
optimization is to make the p~code more compact. The difference in size of
the optimized versus non-optimized p-code is dependent on the types of
language features utilized by the original source program. Typically, the
percent reduction in size due to optimization will fall in the range of 10 to
30 percent. This size reduction is sometimes very important. By making the
program smaller, there is more room for data. Often times, it will enable the
execution of a program that otherwise would run out of memory.

1.1 When to Use the Optimizer

The optimizer should be used any time program size is an important factor.
A programs memory requirements are determined by the number of executable
instructions and by the number and sizes of the variables used. The factor
that the optimizer addresses is the number and length of instructions. The
greatest benefit will then be realized when optimizing long programs ( >200
lines).

1.2 How to Use the Optimizer

Any p-code object file may be used as input to the optimize utility. The
compiler generates an OBJ extension as the default for p-code object files.
Whole programs or separately compiled parts of a program may be optimized. In
either case, simply compile the source program and then run the compiler
generated p-code through the optimizer.

NOTE: Only p~code object files may be optimized. Do
not attempt to optimize command files or files
generated by the code generator.

The optimize utility is stored as a command file and therefore may be
executed simply by typing OPTIMIZE from the top level of the operating
system. It has two forms for input, a short form and a long form.



Using the Optimizer Chapter 1

1.2.1 Short Form

OPTIMIZE file-name

The file-name should not include an extension. The optimizer appends the
default extension OBJ to the file name. The output of the optimizer (the
optimized pcode) is placed in a file of the same name but with the extension
OPT. The OPT file can be used any place that an OBJ file is used.

NOTE: The file-name may include a drive specification.
When a drive is specified, the OPT file is
placed on the same drive as the OBJ file.

1.2.2 Long Form

OPTIMIZE

LISTING = list~file
INP_OBJ = obj-file
OUT_OPT = opt-file

The long form requires that you enter the full file name, including
extension, for both the input object file (obj-file) and output object file
(opt-file). The LISTING will show the name of each separate module in the
input p-code object file as it is processed. After each name will appear its
original size in bytes followed by its optimized size in bytes. The LISTING
may be directed to a file or device. Simply typing the <ENTER> key will
direct the listing to the screen.

At completion, the optimize utility will display on the listing the size of
the non-optimized p-code used as input and the optimized p-code generated as
output.

ORIGINAL LENGTH = size in bytes
OPTIMIZED LENGTH= size in bytes



Chapter 1 Using the Optimizer

1.3 How the Optimizer Works

The optimizer is a program which contains a loader for loading p-code
object files. The loader loads and operates on one module (procedure and/or
function) at a time, maintaining context as it operates on each individual
module. The p-code instructions are analyzed to determine whether or not they
may be compressed into shorter instructions.

Since the compiler is one pass, it must generate some branch and addressing
instructions without knowing the actual displacements. This makes it
necessary to allocate two byte operands for unknown displacements in order to
handle all cases. However, in many cases the displacements can be specified
using only one byte. The optimizer looks for such cases and compresses the
p-code instructions in order to take advantage of the need for only a single

byte operand.

The optimizer also looks for other types of situations where compression of
instructions is possible. For example, all multiply by two instructions are
converted to add instructions. In certain cases, consecutive instructions can
cancel one another out (eg. an increment followed by a decrement). The
optimizer eliminates such cases. The optimizer also performs constant folding
(ie. it replaces arithmetic operations involving only constant operands with a
single constant value). For example, 2+2 would be replaced by the single

constant 4.






Chapter 2

Using the Code Generator

The code generator 1s a program which translates p-code instructions to
machine instructions. Any compiler generated p—-code object file or optimized
p-code file may be used as input to the code generator. Whole programs or
separately compiled parts of programs may be translated (codegened) to machine
instructions to increase execution speed. The speed increase realized from
code generation is dependent on the nature of the program. Typically,
codegened programs will gain a factor of 3 to 5 times increase in speed over
that of pure p-code programs.

2.1 When to Use the Code Generator

The code generator increases execution speed by translating p-code
instructions to machine instructioms. Since each p-code instruction is
equivalent to several machine instructions, code generation also causes an
increase in size. Therefore, the decision of whether or not to perform code
generation on a program must not only be based on speed requirements, but also
on program size. Typically, code generation will cause the size of the object
code to increase by a factor of 2 to 3 over that of pure p-code.

The execution speed of most programs will be adequate even when left in
p-code form. However, programs which perform lots of calculations within
loops will benefit significantly from code generation. Also, when a progranm
contains one or more routines that are frequently called, code generation on
these sections of the program can provide significant improvement in execution
speed. For example, the scanner of the compiler is a routine which reads the
text of a source program and distributes it to other parts of the compiler.
Since it is called frequently, much of the time spent during a compile is
inside this ome routine. Code generation of the scanner can increase compile
speed significantly. By selecting the parts of a program which most effect
speed and performing code generation only on those parts, spsed can be
increased without significant increase in size.

The determination of whether or not to codegen a program can be made by
observation. First run the program in p-code form. If execution speed is
observed to be slow, the next step is to determine whether or not to codegen
the whole program or selected parts of the program. As a general rule, small
programs should be totally codegenad. The size increase for small programs
will probably be insignificant. However, for large programs, the size
increase may be very significant.



Using the Code Generator Chapter 2

For large programs, a factor of 2 to 3 increase in object code size will
significantly reduce the amount of memory left for the program data area
(stack and heap). 1In cases where the size increase would not allow enough
room for data area, selected routines should be compiled separately. The
routines selected should be the ones which most effect execution speed. These
routines may then be codegened and linked to the main program. This process
will allow for an increase in speed without causing the size to increase to a
level that prevents the program from being executed.

2.2 How to Use the Code Generator

Any compiler generated or optimized p-code object file can be used as input
to the code generator. The compiler generates files with the default
extension of OBJ. The optimizer generates files with a default extension of
OPT. Whole programs or separately compiled routines may be codegened. In
either case, simply compile the source, optionally optimize the compiler
output, and then rum the p-code object file through the code generator
utility.

The code generator utility is stored as a command file and is therefore
executed simply by typing CODEGEN from the top level of the operating system.
It also has two forms.

2.2.1 Short Form

CODEGEN file-name

The file-name should not include an extension. The code generator appends
the default extension OBJ to the file name. The output of the code generator
is placed in a file of the same name but with the extension COD. The COD file
may then be used with the other system utilities. However, do not attempt to
optimize a COD file. The COD files contain machine instructions and the
optimizer accepts only p-code instructions.

NOTE: File-name may also include a drive specifier.
When a drive is specified, the COD file is placed
on the same drive as the 0BJ file. The file named
CODEINIT must be on line when CODEGEN is executed.



Chapter 2 Using the Code Generator

2.2.2 Long Form

CODEGEN

INP_OBJ = obj-file or opt-file

OUT_COD = cod-file

DO YOU WANT ASSEMBLY LANGUAGE SOURCE? (Y,N): y or n

The long form requires that you enter the full file name, including
extension, for both input and output files. If assembly language output 1is
desired, answer Y to the last prompt, otherwise answer N. If assembly language
output is requested, the following prompt will appear.

SOURCE =
The additional assembly language output will be directed to the file

specified. The assembly language output is discussed in chapter 5.

NOTE: File names may include drive specifiers.

2.3 How the Code Generator Works

The code generator is a program which contains a loader for loading p-code
object files. The code generator loads one module (procedure or function) at
a time and translates the p-code instructions to machine instructions. As
noted earlier, a p-code instruction is equivalent to several machine
instructions, so the translation process will increase the total number of
instructions.

There are a few p~code instructions which perform very complex functions.
To perform equivalent functions in machine code would require a very large
number of instructions. Therefore, a few selected p-code instructions are not
translated to machine instructions. They are left in p-code form and executed
as subroutine calls to assembly language routines within the interpreter.
Handling complex functions in this manner prevents the COD file from becoming
as large as it would with complete translation.






Chapter 3

Mixed Mode Operation

Through the use of the linking loader (the LINKLOAD utility), pure p-code
object (0OBJ or OPT) files may be linked with codegened (COD) files.
Executable programs (command files) may then be built which contain mixed
instructions, both p-code and machine code. This ability is important when
writing large programs. It allows you to select and codegen only those parts
of a program which most effect the speed of execution. The remaining parts of
the program can be left in pcode form. This mixed mode operation allows you
to increase execution speed without significantly increasing program size.

3.1 When to Use Mixed Mode

The use of mixed mode is usually not important until you start developing
large programs. Small programs can be totally codegened without the size
increase becoming a significant factor. However, completely codegening large
programs ( >500 lines) may cause a size increase which will prevent the
program from being executed. The code size of the program can become so large
that there is no longer enough room for data storage. This of course depends
on the data storage requirements of the program.

When developing large programs, you should not consider code generation
until after executing the program in p-code form. Observe the execution speed
to determine whether or not it is adequate for your application. If not, the
next step is to decide what areas of the program are most effecting the
speed. Long loops are typical areas of a program where most of the execution
time is spent. Another area might be a low level routine or several routines
that are called frequently throughout a program.

After deciding which areas of the program are effecting execution speed the
most, separate them from the rest of the program and codegen them. The
selection and separation process is easiest if the program is well
modularized. That is, the program is already segmented into modules, each
performing a distinct and well defined function.

- 11 -



Mixed Mode Operation Chapter 3

3.2 How to Use Mixed Mode

Once the speed critical routines of a program have been selected for
codegening, they must be separated from the rest of the program. The
separated routines should then be compiled separately from the remainder of
the program. Once the separated routines are compiled, they may be codegened
and then linked to the remainder of the program using the linking loader.

The process for mixed mode operation is summarized by the following list of
steps.

1) Select the areas which most effect program speed.
2) Separate the selected parts of the program from the
remainder of the program. Any selected routines
should be placed in one or more separate files.

3) Compile all parts of the program.

4) CODEGEN the parts of the program which were selected to
increase execution speed.

5) LINKLOAD all compiled parts of the program together and
either run the program or build an executable command file.

-12 -



Chapter 4

Object Format

All Alcor Systems compilers generate object code in the same format. The
object code generated by one compiler can be linked with the object code
generated by another. The object code format was designed in this way so that
programs written in one language could call routines written in another.

4.1 Address Independent

The pseudo-code (p-code) generated by the compilers is address
independent. That is, it contains no absolute memory addresses and can
execute without change when loaded anywhere in memory. All branch and call
instructions are performed relative to the program counter. Since functiouns
and/or procedures are compiled into separate modules, calculation of these
relative addresses must be done when the object code is loaded. The object
format supports external references that are program counter relative.

4.2 ASCII Format

The object code is stored in standard ASCII format. This causes an object
file to require more space than one stored in binary format. However, the
advantage of being able to edit object files or transmit them across a modem
is greater than the disadvantage of creating slightly larger object files.



Object Format Chapter &

4.3 Object Code Tags

The object code is tagged hexadecimal and is emitted in a line oriented
stream. Each item in the object file begins with a tag which is usually an
upper case letter. The tag defines the type of item and the number and size
of the fields to follow. Tags are followed by one or more fields that specify
the information to be loaded. Three types of fields exist. Bytes are
specified with a two character hexadecimal number. Words consist of a four
character hexadecimal number with the most significant byte first. Labels
comsist of eight character names that are the names of external symbols.

Following is a table which lists all the tags used in an object file. All
tags are followed by one to three fields of information, each field being
either a byte, word, or label. The meaning of each tag is also shown.

Tag Fieldl Field2 Field3 Meaning

A byte Absolute(non-relocatable byte)
E End of module

F End of line

G word label Definition of external symbol
I word label External reference declaration
J label Module name

Q word Reference to external symbol
M word word label Definition of common block

N word Reference to common

o word word Overlay definition

P word Code (PC) origin

K word Relative reference to external
W word Relocatable word

X word Absolute word

Y word Entry point definition

End of file

- 14 -



Chapter 4 Object Format

4.4 Splitting Object Modules

The compiler generates independent object modules for each function and/or
procedure in a program. The following is an example of what an object module
looks like.

JLOOP PO000GOO0O0LOOP A01X0000A38A02A03X0001A15A02A10F
A02A03X2710A07A15A06A2BA4EX0000A03X0001A03X0002A22A03X0003F
A22A03X0004A22A03X0005A422A03X0006A22A03X0007A22A03X0008A22F
A03X0009A22A03X000AA22A03X000BA22A03X000CA22A03X000DA22A03F
X000EA22A03X000FA22A15A04A10A02A30X0002A10A06A27A21ABIPO014F
X0047P005DA3AP0001X0006E

Each module in an object file begins with the module name. Therefore, it
is possible to split a file containing several modules into several files,
each containing one module. This is one way to allow code generation of
selected modules.

There are two ways to split the object modules. Omne is to text edit them.
The other method is to write a program to split them. A simple program may be
written to read an object file. Each time a module is encountered, open a
file of the same name as the module and write the module to that file. The
file name may have to be slightly changed to remove any illegal file name
characters. Each module always begins with a J tag and ends with an E tag.

Once all the modules are separated into different files, selected modules
may be input to the code generator and translated to machine instructioms.
The linking loader may then be used to link the individual modules and build
an executable command file.

- 15 =






- Chapter 5

Assembly Language

The code generator has the capability of producing assembly language source
in addition to object code. It is not necessary in normal circumstances to
generate the source, since the object code emitted by CODEGEN is exactly
equivalent to the result of assembling the source. The assembly language is
provided as a means for the programmer to examine the code produced by the
native code generator. In some cases, the programmer may wish to optimize
this code by hand and assemble it. It is expected that the need to do this
will be rare, since the effort is substantial and the improvements that can be
made are minor. If you wish to assemble the source output of CODEGEN, then
the Alcor Systems XASM assembler is required.

The source output of CODEGEN is useful to the assembly language programmer
who wishes to link assembly language modules to programs and to call them as
normal program functions. A technique to accomplish this is to write a dummy
function with the same name and calling sequence as the assembly language
routine. The actual code can be left out and perhaps replaced by a template
that merely accesses the arguments that will be used in assembly language.

The dummy function can be compiled and run through the code generator with the
source option enabled. Codegen will generate the proper function linkage and
will calculate the addresses of variables and arguments referenced in the body
of the function. The generated code can then be used as a skeleton for the
assembly language that actually implements the functions required. The XASM
assembler is required.

5.1 Assembly Language Structure

The assembly language source emitted by CODEGEN is designed for assembly by
the Alcor Systems multiprocessor assembler (XASM). This assembler provides the
ability to mix Z80 code (or 6502 code, or 1802 code, or 8080 code) with
p-code. Essential assembler features include the ability to switch among
target processors (Z80 to p-code), the ability to define and reference
external symbols (externals are resolved at load time), and the ability to
generate p-code addressing modes (program counter relative, stack
displacement, etc.).

Each routine in a program is compiled into a separate object module. All
symbols, labels, and instructions are local to the module and reference other
modules only via explicit external references. Modules begin with a module
identification. The module name is the name of the routine truncated to 8

- 17 -



Assembly Language Chapter 5

characters. Each routine also contains an external definition of its name.
This is signaled with the "DEF" assembler directive (G tag). The DEF
statement causes the name and its value to be defined externally so that other
modules can call it.

Switching between modes (machine vs. p-code) takes place within the
routine. Some features of a compiled language are sufficiently complex that
they are implemented with subroutines. Inclusion of the actual code in~line
would make the generated code unreasonably large. When complex operations
(such as input or output) are performed, the code generator produces a call to
a runtime procedure. These runtime procedures are already part of the p-code
interpreter. Rather than reference them again (and require another copy), the
processor is switched back to p-code mode and the interpreter is allowed to
perform the operation.

When in mixed mode, all calling is performed using the p-code interpreter.
Since code for each module is separate, and since modules may be split before
being loaded, it is unknown whether the module being called is p-code or
machine code. Therefore, every module is entered in p-code mode. If the
module is machine code, the processor is switched to machine code mode
immediately after entry to the module.

5.2 Assembly Language Format

The source code emitted by CODEGEN uses extended 8080 mnemonics. This is
done primarily for historical reasons and since the 8080 instruction set more
clearly distinguishes instructions by format. Use of 8080 extended mnemonics
affects only the source output of codegen, as the Z80 instruction set is used
and converted directly to object code by CODEGEN. Each instruction occupies
one line. Labels are left justified and begin with a letter. FEach
instruction has an opcode which is either an 8080 instruction or a Z80
instruction. There are also pseudo-operators (pseudo-ops) that provide
instructions to the assembler rather than generating code.

Operands use standard register names. In many cases, the names of the 280
index registers are merged with the opcode (e.g. PUSHIX pushes the IX index
register). This simplifies interpretation by the assembler. Operands may
also use symbolic labels and constants. Constants are normally expressed in
hexadecimal (base 16) with a leading greater than sign (">") to specify
hexadecimal to the assembler.

The following table lists the pseudo operators that are directives to the
assembler.

- 18 -



Chapter 5 Assembly Language

IDT identifies the module and gives it a name

EQU defines the value of the label to the result of
evaluating the operand

DEF defines the operand as an external symbol

REF specifies that the operand is an external symbol that
is defined in another module

CSEG Specifies the name and size of a common block

QLIST Selects the compact format for the assembler listing

END Signals the end of the module

ENTRY Defines an entry point into the module

SETCPU Selects the processor whose assembly language is
being assembled

- 19 -















aT s

RADIO SHACK rCS A DIVISION OF TANDY CORPORATION
=

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION
AUSTRALIA BELGIUM U K.

91 KURRAJONG ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
MOUNT DRUITT, N.S.W. 2770 5140 NANINNE WEST MIDLANDS WS10 7JN



	d00intro.pdf
	00.pdf
	01.pdf
	d00intro.pdf
	01.pdf
	02.pdf
	03.pdf
	04.pdf
	05.pdf
	06.pdf
	07.pdf
	08.pdf


	d01beginner.pdf
	000a.pdf
	000b.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf

	d02editor.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf

	d03system.pdf
	000a.pdf
	000b.pdf
	000c.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf

	d04tutorial.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf

	d05reference.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf

	d06adp.pdf
	d06adp.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf

	01.pdf
	02.pdf


